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Three-dimensional numerical model of neutron flux in hex-Z geometry . . . . . . . . . .83
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Finite element modeling of wood structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
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Preface

This book comprises papers that originated from invited lectures and short commu-
nications presented at the seminar Programs and Algorithms of Numerical Mathe-
matics held in Dolńı Maxov, Czech Republic, June 1–6, 2008.

The seminar was organized by the Institute of Mathematics of the Academy of
Sciences of the Czech Republic and continued the previous seminars on mathemati-
cal software and numerical methods held (mostly biannually) in Aľsovice, Bratř́ıkov,
Janov nad Nisou, Kořenov, Lázně Libverda, Dolńı Maxov, and Prague in the period
1983–2006. The objective of this series of seminars is to provide a forum for presen-
tation and discussion of advanced topics in numerical analysis, new approaches to
mathematical modeling, and single- or multi-processor applications of computational
methods.

Almost 50 participants from the field took part in the seminar, most of them
form the Czech universities and from the institutes of the Academy of Sciences of
the Czech Republic. The participation of a significant number of young scientists,
PhD students, and also some undergraduate students is an established tradition of
the PANM seminar; this year was not an exception. We believe that those who took
part in the PANM seminar for the first time found the seminar worth their time and
money, and that they will join the PANM community and will participate in the
next PANM seminar, too.

The organizing committee consisted of Jan Chleboun, Pavel Kůs, Petr Přikryl,
Karel Segeth, and Tomáš Vejchodský. Mrs Hana B́ılková kindly helped in preparing
manuscripts for print.

All papers have been reproduced directly from material submitted by the authors
but an attempt has been made to use a unified layout for each paper.

The editors and organizers wish to thank all distinguished scientists who took
a share in reviewing the submitted manuscripts.

J. Chleboun, P. Přikryl, K. Segeth, T. Vejchodský
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THREE DIMENSIONAL MODELLING OF THE PEACH IN Maple∗

Stanislav Bartoň

Abstract

Linearized Gauss-Newton iteration method is used to determine main axes of the
three-dimensional ellipsoid approximating a peach. Three independent photos dis-
playing the peach as ground, side, and front view are used as data sources. System
Maple 11 was used as a computer environment. A practical example is presented in
order to demonstrate the usage of all required commands. The quality of approxima-
tion is evaluated as a final part of the paper.

1. Introduction

The knowledge of the object’s shape is usually one of the critical parameters
for evaluating its mechanical properties. Concerning peaches, the proportions are
significant e.g. for storage processing, deep freezing namely. Since only undamaged
and healthy fruits can be processed, it is important to determine maximum levels of
mechanical loading, thus to determine the modulus of elasticity [1]. The modulus of
elasticity can be determined by many nondestructive methods. One of them is based
on measuring of the acoustic wave propagation [2].

The most precise method of the object dimensions measuring is 3D scanning [3],
but this method is very expensive, demands a lot of time and manual work, and finally
produces huge amount of data. Digging the main shape parameters represents rather
complicated problem. This article shows the procedure of the approximation of the
peach shape by triaxial ellipsoid and using of three digital photos. These photos
must be taken in mutually perpendicular orientations, see Figure 1.

 = Peach stipes

YZXZXY

Fig. 1: Basic peach photos.

∗This research has been supported by the Grant Agency of the Czech Academy of Sciences under
Contract No. IAA201990701, Behaviour of selected agricultural products under impact loading.
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There are many computer codes intended for the extraction of pixels coordinates
from the objects perimeter. The approach described in [4] was used in this paper.
Coordinates of the perimeter’s pixels were saved in three independent files. Used
algorithm reduces the number of pixels and orders them in such way, that result-
ing polygon approximates the perimeter with the accuracy better than ±1 pixel.
This method reduces the number of pixels from thousands into hundreds of polygon
vertices without loss of accuracy.

2. Coordinate system

Let us assume that a peach will be approximated by a triaxial ellipsoid with the
axis A, B, and C in the spherical coordinate system. If the peach is properly oriented,
see Figure 1, photos can be interpreted as equatorial cross section - XY , and cut
along 0◦ meridian cross section - XZ and 90◦ meridian - Y Z. The cross section curves
may be approximated by mutually dependent ellipses. Their semiaxes will be A, B
for XY , A, C for XZ and B, C for Y Z. It must be assumed that these ellipses will
have different centers and may be rotated by a small angle around different centers.
The following description will be used: [Ax,Ay] = temporary unknown center of the
ellipse approximating the XY cut, Ra - rotation angle of the approximating ellipse
around center. Variables [Bx, Bz], Rb, [Cy, Cz] and Rc have the same meaning
for cross sections XZ and Y Z. Parametric shape will be used to describe all three
ellipses. The first ellipse will be described by the function [A cos(fa), B sin(fa)],
the second one by [A cos(fb), C sin(fb)] and the third one by [B cos(fc), C sin(fc)],
where fa, fb, fc are mutually independent parameters, −π ≤ fa, fb, fc ≤ π. [X, Y ],
[Y, Z] and [Y, Z] are coordinates of the polygon vertices, saved in three different files.
Using these variables we can determine the difference between coordinates of the
general vertex point and the nearest corresponding point on the ellipse. We shall
use the least squares method (LSQ) to compute all unknown variables which will
minimize Qxy + Qxz + Qyz, where:

Qxy = ΣNxy
i=1 (A cos(fai)− (Xi − Ax) cos(Ra)− (Yi − Ay) sin(Ra))2

+ (B sin(fai) + (Xi − Ax) sin(Ra)− (Yi − Ay) cos(Ra))2 ,
(1)

[Xi, Yi] are coordinates of the polygon vertices of the XY cut and fai are parameters
of the points laying on the ellipse approximating the polygon. Qxz and Qyz are
defined very similarly.

3. Preparation of the iteration

Equation (1) is non-linear for all unknowns. It means that an iteration method
based on the linearization must be used. One of the best approaches derived by
Newton and improved by Gauss is the well-known Gauss-Newton method. Purpose
of the presented article is not to explain this method, but to show how to use it
on a complicated and large problem. To handle matrices, the Maple library “Lin-
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earAlgebra” is used. The library “plots” simplifies the visualization of results. The
approach presented in this article is as generalization of [5] and [6].

> restart; with(LinearAlgebra): with(plots):

In order to limit the scope, only commands and variables describing the coordinate
difference between a vertex and the corresponding point on the ellipse for XY cross
section will be described. Other Maple commands are very similar.

> xa:=A*cos(fa)-((X-Ax)*cos(Ra)+(Y-Ay)*sin(Ra)):
> ya:=B*sin(fa)+((X-Ax)*sin(Ra)-(Y-Ay)*cos(Ra)):
> # similarly xb, zb, yc, zc

The difference between origin of the series expansion and the actual variable value
will be substituted as a new variable. This variable has D at the beginning of its
name. The value of this variable will represent the correction for the corresponding
variable during the iteration process.

> Dsu:=map(u->u-cat(u||0)=cat(D||u),Var);
> Mxa:=subs(Dsu,Mxa); # similarly Mya, Mxb, Mzb, Myc, Mzc

Mxa := A0 cos(fa0)− (Y −Ay0) sin(Ra0)− (X −Ax0) cos(Ra0) + DA cos(fa0)
−A0 sin(fa0)Dfa + DAx cos(Ra0) + DAy sin(Ra0)
+((X −Ax0) sin(Ra0)− (Y −Ay0) cos(Ra0))DRa

Complications arise with the parameters. For each vertex/point the best possible
initial approximation is needed. If we have N points, we have to find N corresponding
initial parameters. That is why correction for parameters from the Taylor series must
be separated. Now it is possible to create a lists containing terms multiplying the
individual differences.

> JFxa:=select(has,Mxa,Dfa)/Dfa: # similarly JFya ... JFzc
> JXa:=map(u->select(has,Mxa,u)/u,map(u->rhs(u),Dsu[4..-1]));
> # similarly JYa ... JZc

JXa := [cos(fa0), 0, 0 cos(Ra0), 0, 0, 0, 0, (X −Ax0) sin(Ra0)− (Y −Ay0) cos(Ra0), 0, 0]

Finally, separation of free terms is necessary.

> RXa:=remove(has,Mxa,map(u->rhs(u),Dsu)); # similarly RYa .. RZc

RXa := A0 cos(fa0)− (Y −Ay0) sin(Ra0)− (X −Ax0) cos(Ra0)

9



4. Initial values iteration

At this point, the files containing coordinates of vertices can be read. The whole
polygon will be moved, so its mass center will be in the center of the coordinate
system. Na, Nb, Nc represents the number of vertices in the individual cross sections
and Ta, Tb, Tc are corresponding centers of their masses.

> read "007a_3.sav": Na:=nops(XYL):
> Ta:=sum(XYL[i],i=1..Na)/Na: XY:=map(u->u-Ta,XYL):
> # similarly 007b.sav --> Nb, Tb, XZ and 007c.sav --> Nc, Tc, YZ;
> ’Na’=Na, ’Nb’=Nb, ’Nc’=Nc, ’Ta’=Ta, ’Tb’=Tb, ’Tc’=Tc;

Na = 92, Nb = 80 Nc = 96,
Ta = [407.744, 331.126], T b = [446.333, 324.705], T c = [400.202, 363.912]

The initial values for axes may be determined as average of maximal diameters
of the individual cross sections and arguments of the vertices in the polar coordinate
system may be used as initial values of parameters. If photos were taken carefully
the initial values for displacements and rotations may be zero.

> A0:=0.5*(max(map(u->u[1],XY)[])+max(map(u->u[1],XZ)[])):
> Fa:=map(u->op(2,polar(u[1]+I*u[2])),XY):
> # similarly XY, YZ --> B0; XZ, YZ --> C0; XZ --> Fb; YZ --> Fc
> Ax0:=0: Ay0:=0: Bx0:=0: Bz0:=0: Cy0:=0: Cz0:=0: Ra0:=0: Rb0:=0: Rc0:=0:

5. Iteration

The most important variable in the iteration process is the Jacobi Matrix J .
This matrix is composed from 24 submatrices, 12 of them are zero matrices, see
construction of the Maple variable J . Its construction shows the Figure 2 and exactly
corresponds with the structure of the command line for the variable J . Non zero
elements are shown as crosses. It can be seen, that the Jacobi matrix is very sparse,
partially filled up columns corespond to corrections of the variables [A, B, C, Ax,
Ay, Bx, Bz, Cy, Cz, Ra, Rb, Rc].

The vector of right sides contains variable R and vector DV is vector of corrections
of initial values of searched variables. The variable eps controls whole iteration, which
runs until eps is less than 10−5. The quadratic norm of the vector of corrections DV
is assigned into eps. To reduce the big steps between corrections, corrections will
be reduced to one half. Because at first few passes through loop corrections the
parameters may be higher than 2π, it is necessary to recompute all parameters into
range < −π, π >. Subsequently, the corrections to all other variables are added.

> eps:=1: while eps>1e-5 do;
> J:=Matrix([[DiagonalMatrix(map(u->subs(fa0=u,JFxa),Fa)),ZeroMatrix(Na,Nb),
> ZeroMatrix(Na,Nc), Matrix(zip((u,v)->subs(fa0=u,X=v[1],Y=v[2],JXa),Fa,XY))],
> [DiagonalMatrix(map(u->subs(fa0=u,JFya),Fa)),ZeroMatrix(Na,Nb),
> ZeroMatrix(Na,Nc),Matrix(zip((u,v)->subs(fa0=u,X=v[1],Y=v[2],JYa),Fa,XY))],
> [ZeroMatrix(Nb,Na),DiagonalMatrix(map(u->subs(fb0=u,JFxb),Fb)),
> ZeroMatrix(Nb,Nc), Matrix(zip((u,v)-subs(fb0=u,X=v[1],Z=v[2],JXb),Fb,XZ))],
> [ZeroMatrix(Nb,Na),DiagonalMatrix(map(u->subs(fb0=u,JFzb),Fb)),

10
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Fig. 2: Structure of the Jacobi matrix.

> ZeroMatrix(Nb,Nc),Matrix(zip((u,v)->subs(fb0=u,X=v[1],Z=v[2],JZb),Fb,XZ))],
> [ZeroMatrix(Nc,Na),ZeroMatrix(Nc,Nb),DiagonalMatrix(map(u->subs(fc0=u,JFyc),
> Fc)),Matrix(zip((u,v)->subs(fc0=u,Y=v[1],Z=v[2],JYc),Fc,YZ))],
> [ZeroMatrix(Nc,Na),ZeroMatrix(Nc,Nb),DiagonalMatrix(map(u->subs(fc0=u,JFzc),
> Fc)),Matrix(zip((u,v)->subs(fc0=u,Y=v[1],Z=v[2],JZc),Fc,YZ))]]):
> R:=-Vector([zip((u,v)->subs(fa0=u,X=v[1],Y=v[2],RXa),Fa,XY)[],
> zip((u,v)->subs(fa0=u,X=v[1],Y=v[2],RYa),Fa,XY)[],zip((u,v)->subs(fb0=u,
> X=v[1],Z=v[2],RXb),Fb,XZ)[],zip((u,v)->subs(fb0=u,X=v[1],Z=v[2],RZb),
> Fb,XZ)[],zip((u,v)->subs(fc0=u,Y=v[1],Z=v[2],RYc),Fc,YZ)[],
> zip((u,v)->subs(fc0=u,Y=v[1],Z=v[2],RZc),Fc,YZ)[]]):
> DV:=LeastSquares(J,R):eps:=Norm(DV,2):DV:=0.5*DV;
> Fa:=Fa+convert(DV[1..Na],list):Fb:=Fb+convert(DV[1+Na..Na+Nb],list):
> Fc:=Fc+convert(DV[1+Na+Nb..Na+Nb+Nc],list):A0:=A0+DV[Na+Nb+Nc+1];
> B0:=B0+DV[Na+Nb+Nc+2]; C0:=C0+DV[Na+Nb+Nc+3];Ax0:=Ax0+DV[Na+Nb+Nc+4];
> Ay0:=Ay0+DV[Na+Nb+Nc+5]; Bx0:=Bx0+DV[Na+Nb+Nc+6];Bz0:=Bz0+DV[Na+Nb+Nc+7];
> Cy0:=Cy0+DV[Na+Nb+Nc+8]; Cz0:=Cz0+DV[Na+Nb+Nc+9];Ra0:=Ra0+DV[Na+Nb+Nc+10];
> Rb0:=Rb0+DV[Na+Nb+Nc+11]; Rc0:=Rc0+DV[Na+Nb+Nc+12];
> Fa:=map(u->op(2,polar(cos(u)+I*sin(u))),Fa):Fb:=map(u->op(2,polar(cos(u)+
> I*sin(u))),Fb):Fc:=map(u->op(2,polar(cos(u)+I*sin(u))),Fc):
> Ra0:=op(2,polar(cos(Ra0)+I*sin(Ra0))):Rb0:=op(2,polar(cos(Rb0)+I*sin(Rb0))):
> Rc0:=op(2,polar(cos(Rc0)+I*sin(Rc0))):
> end do:

6. Results interpretation

The accuracy of the approximation of individual cross sections can be displayed,
see Figure 3.
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Fig. 3: Accuracy of the individual cross sections.

> Xa:=A0*cos(f); Ya:=B0*sin(f):
> Xra:=cos(Ra0)*Xa-sin(Ra0)*Ya+Ax0: Yra:=sin(Ra0)*Xa+cos(Ra0)*Ya+Ay0:
> # similarly A0,C0,f-->Xb,Zb-->Xrb,Zrb; B0,C0,f-->Yc,Zc-->Yrc,Zrc;
> P1:=plot(XY,style=point,symbol=circle,symbolsize=20,color=black):
> P2:=plot([Xra,Yra,f=0..2*Pi],color=black,thickness=2,thickness=2,linestyle=1):
> # similarly XZ,symbol=cross --> P3, Xrb,Zrb,linestyle=3 --> P4
> # similarly YZ,symbol=box --> P5, Yrc,Zrc,linestyle=4 --> P6
> display({P1,P2,P3,P4,P5,P6});

Correlation between vertex points and corresponding points on the individual ellipses
and the average of the relative displacements can be computed.

> R1:=map(u->sqrt(u[1]^2+u[2]^2),XY):
> R2:=map(u->evalf(subs(f=u,sqrt(Xra^2+Yra^2))),Fa):
> DR:=zip((u,v)->abs(u-v),R1,R2): AR:=zip((u,v)->0.5*(u+v),R1,R2):
> RRa:=zip((u,v)->u/v,DR,AR): MRa:=sum(RRa[i],i=1..Na)/Na:
> CRa:=stats[describe,linearcorrelation](R1,R2):
> # similarly XZ-->R1, Fb-->R2, R1,R2-->Mrb,Crb
> # similarly YZ-->R1, Fc-->R2, R1,R2-->Mrc,Crc
> Correlations:=[CRa,CRb,CRc];
> Mean_relative_displacement:=[MRa,MRb,MRc];

12



Correlations := [0.992, 0.948, 0.084]
Mean relative displacements := [0.012, 0.021, 0.021]

We see that mean displacements are close to 2%, the highest individual dis-
placement is lower than 7%, and the correlation coefficient between vertices and
corresponding points on the individual ellipses is higher than 90%. These results
enable to declare the approximation as successfull. Finally, 3D plot showing triaxial
ellipsoid with projections of the cross sections can be displayed, see Figure 3.

> PCH:=plot3d([A0*cos(f)*cos(l),B0*cos(f)*sin(l),C0*sin(f)],
> l=-Pi..Pi,f=-Pi/2..Pi/2,style=wireframe,color=grey):
> Sa:=spacecurve(map(u->[cos(Ra0)*(u[1]-Ax0)+sin(Ra0)*(u[2]-Ay0),
> -sin(Ra0)*(u[1]-Ax0)+cos(Ra0)*(u[2]-Ay0),0],XY),
> color=black,thickness=3,linestyle=1):
> # similarly Bx0,Bz0,Rb0,XZ,linestyle=3 --> Sb
> # similarly Cy0,Cz0,Rc0,YZ,linestyle=4 --> Sc
> display({PCH,Sa,Sb,Sc},scaling=constrained,axes=boxed);
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Fig. 4: 3D Peach approximation.
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7. Conclusions

Regarding above stated high correlation coefficients and relative displacements,
and with the reference to the results shown in Figures 3 and 4, it can be concluded
that presented approach provides excellent results. It means that it can be used
as a tool for the space approximation of simple three-dimensional objects, such as
peaches, apricots, apples, cucumbers, etc.
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NUMERICAL MODELING OF NEUTRON FLUX
IN HEXAGONAL GEOMETRY∗

Tomáš Berka, Marek Brandner, Milan Hanuš, Roman Kužel, Aleš Matas

1. Introduction

Our concern in this paper is the neutron flux in the VVER type nuclear reactors.
A nuclear reactor is composed of the fuel assemblies. An important feature of the
VVER type nuclear reactors is that their fuel assemblies have hexagonal shape.

The transport theory and the diffusion theory are the two general ways how to
model the neutron flux. In this paper we particularly study the two-dimensional two-
group neutron diffusion model. We formulate the mathematical model in Section 2.

In the key Section 3 we present a modern variant of the CMFD-nodal methods
suited particularly for solving the neutron diffusion equation on a hexagonal mesh.
The method is build upon the conformal mapping. CMFD-nodal methods employ the
technique called transverse integration. When applied to a hexagonal mesh, certain
singular terms arise. Wagner’s approach ([5] and [3]) is to simply ignore these terms.
The approach involving conformal mapping gives more accurate results.

In Section 5 we introduce the integral part of nodal methods, the technique of
homogenization. It determines how to transform the general equations with variable
coefficients to the equations with node-wise constant coefficients. Such a procedure
is based on conditions of preserving certain physical quantities.

2. Mathematical model

In the active zone of a nuclear reactor we consider the two-group neutron diffusion
model. It is a generalized eigenvalue problem and can be written in the following
way

∇ · j1(x) + Σ1
r(x)φ1(x) =

1

keff

[
νΣ1

f (x)φ1(x) + νΣ2
f (x)φ2(x)

] def.
= s1(x),

∇ · j2(x) + Σ2
r(x)φ2(x) = Σ1→2

s (x)φ1(x)
def.
= s2(x).

(1)

The unknown quantities in (1) are the neutron flux φg (eigenfunction, g = 1, 2) and
the reactor critical number keff (inverse of the largest eigenvalue). The superscript g
corresponds to the energy group. The term jg is the neutron current and we link it

∗This work has been supported by the projects MSM4977751301 and 1M0545.
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to the neutron flux φg through the following constitutive relation, which is called the
Fick’s law

jg(x) = −Dg(x)∇φg(x). (2)

The other terms present in (1) are given. They characterize certain material prop-
erties of the fuel assemblies.

At the boundary of the active zone of a nuclear reactor it is usual to consider the
albedo boundary conditions of the form

γφ1(x)− j1(x) · n(x) = 0, γφ2(x)− j2(x) · n(x) = 0, (3)

where γ is a given albedo coefficient.

3. Conformal mapping method

For numerical solution of the problem (1)–(3), we use the conformal mapping
method. This method is a variant of the CMFD-nodal methods which are a combi-
nation of the CMFD (Coarse Mesh Finite Differences) and the two-node problems
(see [5], [3]). CMFD is just a finite volume method applied to the physical node-wise
discretization mesh of an active zone. It gives us the neutron fluxes averaged over
particular nodes, six values of neutron currents averaged over the nodal faces and the
critical number. Two-node problems are solved semianalytically and give us more
accurate surface currents, which we use to correct the iteration matrix of the CMFD.
These two general steps are repeated until convergence is achieved. The CMFD is
a nonlinear procedure in this context and is intended to accelerate convergence of
the whole process.

Conformal mapping method is designed specifically for hexagonal meshes, where
it is more accurate then classical CMFD-nodal methods. The CMFD part is identical
to another CMFD-nodal methods. Solution of the two-node problems is based on
use of the conformal mapping, particularly the Schwarz-Christoffel transformation,
which maps a complex half-plane onto the interior of a polygon. We utilize this
transformation to map the interior of a hexagon in a complex plane z = x + iy onto
the interior of a rectangle in a complex plane w = u + iv (see Fig. 1). Construction
of the mentioned mapping is described in detail in [2].

x

ξη

u

y

v

a) b)

h/2

R = h/
√

3 b

a

(−a/2, 0)

(a/2, b)ξ′

η′

Fig. 1: Conformally mapped hexagon onto a rectangle.
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j̄Lh j̄Rh

j̄TRh

j̄BRhj̄BLh

j̄TLh

j̄Rj̄L

jT(u)

jB(u)

Fig. 2: The notation of averaged currents.

Below, we use the following notation; the quantities with the subscript “h” cor-
respond to a hexagon, the other correspond to a rectangle. The subscripts “R”, “L”,
“T”, “B” stand for “right”, “left”, “top”, “bottom” halves of a hexagon or a rectan-
gle respectively; see Fig. 2 for the notation of averaged currents on the boundary of
a hexagon and a rectangle. The over-bar denotes surface averaged quantities. The
tilde denotes transverse integrated quantities (see Section 3.1).

3.1. Two-node problems

We solve three two-node problems corresponding to the directions x, ξ and η
(see Fig. 1a) for the pairs of currents (j̄Lh, j̄Rh), (j̄TRh, j̄BLh) and (j̄TLh, j̄BRh) respec-
tively. These steps are performed successively. We present the x-step. The other
steps are analogous.

In the following, we omit the group index. If we transform the first equation
in (1) valid over the interior of a hexagonal node Hi from the coordinate system xy
to the coordinate system uv we obtain

−D∆φ(u, v) + Σrg
2(u, v)φ(u, v) = g2(u, v)s(u, v) (4)

valid over a rectangle Ri. The second equation in (1) can be proceeded in the same
way. The function g(u, v) is defined on a hexagonal node as

g(u, v) =

∣∣∣∣
dz

dw

∣∣∣∣ . (5)

The term 1/g2(u, v) appears in the image of the Laplace operator as a weighting
factor.

Now we apply the transverse integration on (4) and obtain

−D
d2φ̃(u)

du2
+ Σrg̃2(u)φ̃(u) = g̃2(u)s̃(u)− lv(u), (6)

where

φ̃(u) =
1

b

∫ b

0

φ(u, v) dv, g̃2(u) =
1
b

∫ b

0
g2(u, v)φ(u, v) dv

φ̃(u)
∼ 1

b

∫ b

0

g2(u, v) dv. (7)
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The approximation of the term g̃2(u) is discussed in [2].
The transverse leakage lv(u) on a rectangle in the direction v at a point u is

defined as follows

lv(u) =
1

b

(
jT(u)− jB(u)

)
. (8)

There are several ways how to approximate this term. The simplest method is
to consider constant leakage on the hexagon half-nodes. It can be expressed on
a rectangle as

lvL(u) =
1

b
g(u, 0)(j̄TLh − j̄BLh), lvR(u) =

1

b
g(u, 0)(j̄TRh − j̄BRh). (9)

The other possibility is to assume the transverse leakage linear on the boundary
half-nodes and constant on the inner half-nodes, which is more complicated. We
need to determine two unknowns for a linear function. We acquire them from the
global boundary condition information and from the condition of preservation of the
total leakage on the boundary half-nodes (see [6]).

3.2. Semi-analytic solution

We seek for a solution of (6) in the following form

φ̃(u) = a0p0(u) + a1p1(u) + a2p2(u)︸ ︷︷ ︸
particular

+ a3 sinh(ku) + a4 cosh(ku)︸ ︷︷ ︸
homogeneous

, (10)

where

k =

√
g̃2(a/2)Σr

D
. (11)

The solution (10) has two parts. The homogeneous part is the approximation of
the analytical solution to the homogeneous part of the equation. The particular part
is sought in the space of quadratic polynomials (p0, p1, p2) in the weighted residue
sense and solves approximately the complete inhomogeneous equation.

The solution has five unknown coefficients. One of them is determined from the
condition of preserving the CMFD’s node averaged flux. Another three are given by
matching the zeroth, first, and second moment conditions of the weighted residue.
The last one arises from the continuity of the flux and current at the interface of
two adjacent nodes. On the boundary, we employ the boundary condition instead
(see e.g. [3]).

The surface averaged currents at the points u = ±a/2 can be derived from (10)
and (2) as follows

j̄L = j̃(u = −a/2) = −D
dφ̃(u)

du

∣∣∣∣
u=−a/2

, (12)

j̄R = j̃(u = +a/2) = −D
dφ̃(u)

du

∣∣∣∣
u=+a/2

. (13)
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It can be proved (after proper normalization of g(u, v)) that the following relations
between the currents on a hexagon and the currents on a rectangle hold true

j̄Lh =
b

R
j̄L, j̄Rh =

b

R
j̄R. (14)

The quantities j̄Lh and j̄Rh are used to correct the CMFD iteration matrix.

4. Benchmark

We undertook a numerical test on a sample configuration of a VVER-440 reactor,
the experiment parameters are detailed in Benchmark no. 6 in [1]. On the picture
below we see the scheme of the configuration of one sixth of the core, which is
one sixth rotationally symmetric. The reactor critical number keff and the node
averaged power distributions (PD, derived from the neutron fluxes) were computed
using the approach described in previous sections with constant leakage (code of
Roman Kužel). Then we compared the results with accurate result of the FVM on
a fine mesh (code of Milan Hanuš).

• keff = 1.01447

• keff error = −7.89× 10−5

• PD avg. error = 1.48%

• PD max. error = 1.93%

5. Homogenization

As soon as analytical approach is to be used for solving neutron diffusion equation,
it is necessary to transform the general diffusion equation with variable coefficients to
an equation with node-wise constant coefficients. We call the original problem het-
erogeneous and the latter homogeneous. Such a transformation is possible through
the technique of homogenization. Generally, it means that we require certain phys-
ical quantities from the heterogeneous problem to be preserved in the solution of
the homogeneous problem. In this way, we acquire the constant coefficients. Let us
consider only one energy group. The other groups can be proceeded in a similar way
(see [4]).

We denote quantities corresponding to the homogeneous problem with a hat over
a quantity. The other correspond to the heterogeneous problem. The symbol i stands
for the index of a node.

19



5.1. Principle

Our main goal is to preserve the reactor critical number. We proceed with the one-
group (for more groups, see [4]) integral formulation of the system (1) in a node Hi

6∑

k=1

∫

Γi,k

j(x) · ni,k dS +

∫

Hi

Σr(x)φ(x) dx =
1

keff

ν

∫

Hi

Σf (x)φ(x) dx, (15)

where Γi,k is a k-th surface (k = 1, . . . , 6) of a hexagonal node Hi. Preservation
of the reactor critical number can be directly fulfilled by (15) if we define the con-
stant coefficients, such that the reaction rates and the surface averaged currents are
preserved

∫

Hi

Σ̂i
(.)φ̂(x) dx =

∫

Hi

Σ(.)(x)φ(x) dx ⇒ Σ̂i
(.) =

∫
Hi

Σ(.)(x)φ(x) dx
∫
Hi

φ̂(x) dx
,

∫

Γi,k

ĵ(x) · ni,k dS =

∫

Γi,k

j(x) · ni,k dS ⇒ D̂i =

∫
Γi,k

j(x) · ni,k dS

− ∫
Γi,k

∇φ̂(x) · ni,k dS
.

5.2. Approximate theories

In the principle described above, we assume that the heterogeneous and the ho-
mogeneous solutions of the problem are known. They provide the homogenized
parameters. In practice, we do not know the heterogeneous solution. At the begin-
ning of the calculation, we also do not know the homogeneous solution. Therefore,
we have to define the homogenized coefficients in a different way using approximate
homogenization theories based on the flux-weighted constants (FWC) and on the
general equivalence theory (GET), see [4], described in the following sections.

Instead of computing the heterogeneous solution of the global problem, we cal-
culate the solution of the one-node problems for different types of assemblies. It
means that we do not take into account the geometry of the active zone and we have
to choose some suitable boundary conditions. Usually we impose zero net current
at the boundary of an assembly. Then, we consider such solution as heterogeneous
(exact) and use it to determine the homogenized parameters.

Another possibility is to consider the seven-node problem. To determine the
homogenized parameters of some node Hi we solve the heterogeneous problem on
the domain composed of Hi and its six neighbors. The zero net current BCs are
prescribed on the surfaces of the neighbors. This approach leads to higher accuracy
of the computed homogenized parameters of the considered node. It is necessary
to take into account position of Hi in the active zone and to solve the seven-node
problem for each node in the reactor.
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5.3. Flux-weighted constants (FWC)

This is the simplest method for computing the homogenized coefficients. We
consider two general approximations. The first is the following

∫

Hi

φ(x) dx ≈
∫

Hi

φ̂(x) dx. (16)

The other approximation is the definition of the homogenized diffusion coefficient
arising from the transport theory as follows

1

D̂i
=

∫
Hi

φ(x)/Dg(x) dx∫
Hi

φ(x) dx
. (17)

The crucial problem of FWC is that we cannot determine one diffusion coefficient
for one node, such that surface averaged fluxes are continuous on each nodal surface.
For a thourough analysis of the problem, see [4].

5.4. General equivalence theory (GET)

This theory withdraws the problem of FWC by relaxing the continuity of the
fluxes on the interfaces of the nodes. For this purpose, we introduce the new homog-
enization parameters called the factors of discontinuity corresponding to a node Hi

on the surfaces (Hi,Hi+1) and (Hi,Hi−1) (considering direction x) as follows

fx+
i =

∫
Γi,x+

φ(x) dS
∫
Γi,x+

φ̂(x) dS
, fx−

i =

∫
Γi,x−

φ(x) dS
∫
Γi,x−

φ̂(x) dS
. (18)

To eliminate the unknown homogeneous solution from the definition of fx+
i (analog-

ically for fx−
i ) the following equalities must hold

∫

Γi,k

φ̂(x) dS =

∫

Hi

φ̂(x) dx =

∫

Hi

φ(x) dx. (19)

The first equality follows from the fact that the homogeneous solution of the one-
node problems is constant. We can rewrite (18) for fx+

i (analogically for fx−
i ) in the

following way

fx+
i =

∫
Γi,x+

φ(x) dS
∫
Γi,x+

φ̂(x) dS
=

∫
Γi,x+

φ(x) dS∫
Hi

φ(x) dx
. (20)

At this point we substitute continuity of the flux on an interface with the discon-
tinuity condition

fx+
i

∫

Γi,x+

φ̂(x) dS = fx−
i+1

∫

Γi+1,x−
φ̂(x) dS. (21)

As we relaxed continuity of the flux, we can choose the diffusion coefficient entirely
arbitrarily in so far it has a physical meaning. It is reasonable to use the FWC
choice (17).
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5.5. Algorithm

Solution procedure of the whole reactor problem together with homogenization
can be summarized in the following steps:

1. Calculate the homogenized parameters from the one-node problems for different
types of assemblies or from seven-node problems for the whole reactor.

2. Calculate the homogeneous solution of the whole reactor problem.

3. Calculate the homogenized parameters from the one-node or seven-node prob-
lems for the whole reactor. Use the surface currents calculated in the step 2 or
4 as a new boundary condition for these problems.

4. Calculate the homogeneous solution of the whole reactor problem.

5. Check the convergence of the homogenized parameters by inspection of two
successive approximations. If the difference is too large continue from step 3.

Usually two iterations of the whole algorithm are sufficient to achieve required accu-
racy.
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NUMERICAL MODELLING OF RIVER FLOW (NUMERICAL
SCHEMES FOR ONE TYPE OF NONCONSERVATIVE SYSTEMS)∗

Marek Brandner, Jǐŕı Egermaier, Hana Kopincová

Abstract

In this paper we propose a new numerical scheme to simulate the river flow in the
presence of a variable bottom surface. We use the finite volume method, our approach
is based on the technique described by D. L. George for shallow water equations. The
main goal is to construct the scheme, which is well balanced, i.e. maintains not only
some special steady states but all steady states which can occur. Furthermore this
should preserve nonnegativity of some quantities, which are essentially nonnegative
from their physical fundamental, for example the cross section or depth. Our scheme
can be extended to the second order accuracy.

1. Introduction

We are interested in solving the problem describing the fluid flow through the
channel with the general cross-section area

at + qx = 0, (1)

qt +

(
q2

a
+ gI1

)

x

= −gaBx + gI2,

where a = a(x, t) is the unknown cross-section area, q = q(x, t) is the unknown
discharge, B = B(x) is the function of elevation of the bottom, g is the gravitational
constant and

I1 =

∫ h(x)

0

[h(x)− η]σ(x, η)dη, (2)

I2 =

∫ h(x)

0

(h− η)

[
∂σ

∂x

]
dη, (3)

where η is the depth integration variable, h is the water depth and σ(x, η) is the
width of the cross-section at the depth η.

The special case are the equations reflecting the fluid flow through the varying
rectangular channel

at + qx = 0, (4)

qt +

(
q2

a
+

qa2

2l

)

x

=
ga2

2l2
lx − gabx,

∗This work was supported by the Research Plan MSM 4977751301 and by Moravian-Silesian
region.
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or the system with constant rectangular channel

ht + (hu)x = 0, (5)

(hu)t +

(
hu2 +

1

2
gh2

)

x

= −ghBx,

where h(x, t) is the water depth and u(x, t) is the horizontal velocity.

All of the presented systems can be briefly written in the matrix form

qt + [f(q)]x = ψ(q, x), (6)

where q(x, t) is the vector of conserved quantities, f(q) is the flux function and
ψ(q, x) is the source term.

There are many numerical schemes for solving (6) with different properties and
possibilities of failing. For example central, upwind or central-upwind schemes. The
main requirements on the numerical schemes are the consistency (in the finite volume
meaning: consistency with flux function), the conservativity (if there is possibility to
rewrite the problem to the conservative form it is required to have conservative nu-
merical scheme), positive semidefiniteness, i.e. the schemes preserve nonnegativity of
some quantities, which are essentially nonnegative from their physical fundamental,
and the well-balancing, i.e. the schemes maintain some or all steady states which can
occur. The next properties are the order of the schemes, stability and the conver-
gence. There are, of course, related conditions to provide mentioned requirements,
for example so called CFL (Courant-Friedrichs-Levy) stability condition.

2. Augmented formulations

There are several ways how to formulate the fluid flow problems. Homogeneous,
autonomous, conservative formulation, which is used for standard cases, like Euler
equations or fluid flow through the channel with constant cross-section and flat bot-
tom have the form

qt + [f(q)]x = 0, x ∈ R, t ∈ (0, T ), (7)

q(x, 0) = q0(x), x ∈ R,

where q = q(x, t) : R×〈0, T ) → Rm, q0 = q0(x) : R → Rm, f = f(q) : Rm → Rm.
This formulation corresponds to (6) with zero right hand side.

The homogeneous, nonautonomous, conservative case

qt + [f(q,w(x))]x = 0, x ∈ R, t ∈ (0, T ), (8)

q(x, 0) = q0(x), x ∈ R,

where w = w(x) : R → Rs is a given function.
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The system (8) can be rewritten to the homogeneous, autonomous, conservative
formulation (we add the equation wt = 0)

q̃t + [f̃(q̃)]x = 0, x ∈ R, t ∈ (0, T ), (9)

q̃(x, 0) = q̃0(x), x ∈ R,

where q̃ = [q, w̃]T , f̃(q̃) = [f(q, w̃),0]T and q̃0(x) = [q0(x),w(x)]T .
Now we consider the system in the form (nonhomogeneous, autonomous case)

qt + [f(q,w(x))]x = B(q,w(x))wx, x ∈ R, t ∈ (0, T ), (10)

q(x, 0) = q0(x), x ∈ R,

where B = B(q,w) is the matrix function of the type m× s.
In the case of the river flow (4) this augmented formulation has following form

q = [a, q]T , w(x) = [l(x), b(x)]T ,

f(q,w) = [q, q2

a
+ ga2

2l
]T ,

B(q,w(x)) =

[
0 0

ga2

2l2
−ga

]
.

We can rewrite the previous system to the augmented, homogeneous, autonomous,
quasilinear formulation

q̃t + C(q̃)q̃x = 0, x ∈ R, t ∈ (0, T ), (11)

q̃(x, 0) = q̃0(x), x ∈ R,

where

C(q̃) =

[
fq fw −B(q, w̃)
0 0

]
,

The following relation holds fx = fqqx + fwwx.
The next extension can be done by adding another equation in the form

[f(q)]t + fq[f(q,w(x))]x − fqB(q,w(x))wx = 0.

The previous relation provides some theoretical insight into how the flux behaves.
The overdetermined system has now the form

q̂t + D̂(q̂)q̂x = 0, x ∈ R, t ∈ (0, T ), (12)

q̂(x, 0) = q̂0(x), x ∈ R,

where q̂ = [q, w̃, f̂ ]T ,

D̂(q̂) =




fq fw −B(q, w̃) 0
0 0 0
0 −fqB(q, w̃) fq


 ,
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where q̂(x) = [q0(x),w(x), f(q0(x),w(x))]T . The advantage of this formulation is
in the conversion of the nonhomogeneous systems to the homogeneous one. For our
model of the river flow the matrix has the form

D̂(q̂) =




0 1 0 0 0 0
−q2

a2 + ga
l

2q
a

−ga2

l2
ga 0 0

0 0 0 0 0 0
0 0 0 0 0 0

0 0 −ga2

2l2
ga 0 1

0 0 −gqa
l2

2gq −q2

a2 + ga
l

2q
a




,

where q̂ = [a, q, l, b, q, q2

a
+ ga2

2l
]. The second and fifth equations have the same un-

known quantity, so the fifth equation can be rejected.
Now we can formulate new problem in the form

q̌t + Ď(q̌)q̌x = 0, x ∈ R, t ∈ (0, T ),
q̌(x, 0) = q̌0(x), x ∈ R,

(13)

where for our model of the river flow the matrix has the form

Ď(q̌) =




0 1 0 0 0
−q2

a2 + ga
l

2q
a

−ga2

l2
ga 0

0 0 0 0 0
0 0 0 0 0

0 −q2

a2 + ga
l

−gqa
l2

2gg 2q
a




, (14)

and q̌ = [a, q, l, b, q2

a
+ ga2

2l
]T .

3. Finite volume methods

The finite volume methods are suitable for solving conservation laws, because the
numerical solution is modified only by the intercell fluxes. These methods are based
on the integral formulation of the problem. They use approximation of the integral
averages of the unknown function instead of the approximations of the unknown
functions. And the consistency of these methods is related to the flux function.
See [6].

We define the following discretisation of the volume and time

xj = j∆x, j ∈ Z, ∆x > 0, tn = n∆t, n ∈ N0, ∆t > 0,
xj+1/2 = xj + ∆x/2, tn+1/2 = tn + ∆t/2.

We denote the conserved quantities at time tn and point xj: qn
j = q(xj, tn) and

qj(t) = q(xj, t) and its approximations: Qn
j = Q(xj, tn) ≈ qn

j , and Qj(t) =
Q(xj, t) ≈ qj(t). The finite volumes mean the sets (xj−1/2, xj+1/2)× (tn, tn+1).
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We denote the integral averages of the conserved quantities over the finite volume

Q̄n
j ≈ q̄n

j =
1

∆x

xj+1/2∫

xj−1/2

q(x, tn) dx, (15)

and the average flux along x = xj+1/2

F̄
n+1/2
j+1/2 ≈ f̄

n+1/2
j+1/2 =

1

∆t

tn+1∫

tn

f(q(xj+1/2, t)) dt. (16)

Fully discrete conservative method can be written as relation between approximations
of the flux averages and approximations of the integral averages of the conserved
quantities

Q̄n+1
j = Q̄n

j −
∆t

∆x
(F̄

n+1/2
j+1/2 − F̄

n+1/2
j−1/2 ). (17)

Sometimes it is useful to consider the discretisation in two steps. First step is
discretisation only in the space (interval (xj−1/2, xj+1/2))

Q̄j = Q̄j(t) ≈ q̄j = q̄j(t) =
1

∆x

xj+1/2∫

xj−1/2

q(x, t) dx. (18)

This leads to the system of the ordinary differential equations in the time

d

dt
Q̄j = − 1

∆x
[Fj+1/2 − Fj−1/2]. (19)

4. Steady states

The steady states mean that the unknown quantities do not change in the time,
i.e. qt = 0 and the flux function must balance the right hand side [f(q)]x = ψ(q, x).
For the augmented systems this means that, for example D(q̂)q̂x = 0.

Some schemes are constructed to preserve some special steady states like so called
rest at lake, i.e. there is no motion and the free surface height is constant:

q(x, t) = 0, h(x, t) + b(x) = const. (20)

This steady state has following form for our model (4)

q(x, t) = 0,

(
q2

a
+

ga2

2l

)

x

− ga2

2l2
lx + gabx = 0. (21)

Under the assumption a = hl the mentioned relations can be rewritten into the form

ghl(h + b)x = 0.
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For general steady states the following equalities hold

qx = 0,

(
q2

a
+

ga2

2l

)

x

=
ga2

2l2
lx − gabx, (22)

the left term in the second equality we can rewrite as

(
q2

a
+

ga2

2l

)

x

=
(
−u2 +

ga

l

)
ax − ga2

2l2
lx, (23)

and together we have (
−u2 +

ga

l

)
ax =

ga2

l
lx − gabx. (24)

From (24) we obtain the following relation for general steady states (the Bernoulli
equation) (

1

2
u2 + gb +

ga

l

)

x

= 0. (25)

For numerical methods it is important to choose such approximation which con-
served these steady states. The equation (25) means that the term 1

2
u2 + gb + ga

l

is constant for differentiable steady states. Therefore following property has to be
satisfied (

1

2
u2 + gb +

ga

l

)

j

=

(
1

2
u2 + gb +

ga

l

)

j+1

. (26)

We rearrange (26) and we can express the discrete relation analogous to the smooth

one φx =
(−u2 + ga

l

)
ax − ga2

2l2
lx

∆Φ =

(
−|ULUR|+ g

ĀL̄

LLLR

)
∆A− g

2

Ã2

LLLR

∆L, (27)

where XL = X̄j, XR = X̄j+1, ∆X = XR − XL, X represents U , L and A, L̄ =
(LL + LR)/2, Ā = (AL + AR)/2, Ã2 = (A2

L + A2
R)/2. The details can be found in [1].

5. Central methods

The central methods are universal schemes for solving hyperbolic partial differ-
ential equation, see [5]. In these schemes there is not necessary to construct the
characteristic decomposition of the flux f nor to compute the approximation of the
Jacobian matrix. These schemes are Riemann problem free. They are robust but
they are characterized by large numerical diffusion.

One example is the first-order Lax-Friedrichs scheme

Q̄n+1
j =

1

2
(Q̄n

j−1 + Q̄n
j+1)−

∆t

2∆x
[f(Q̄n

j+1)− f(Q̄n
j−1)], (28)
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where the flux function for the conservative form can be written in the form

F
n+1/2
j+1/2 =

1

2
[f(Q̄n

j ) + f(Q̄n
j+1)]−

∆x

2∆t
(Q̄n

j+1 − Q̄n
j ). (29)

For our model describing fluid flow through the constant rectangular channel

ht + qx = 0,

qt +
(

q2

h
+ 1

2
gh2

)
x

= −ghbx.

We substitute y = h + b and then we can write

yt + qx = 0,

qt +
(

q2

y−b
+ 1

2
g(y − b)2

)
x

= −g(y − b)bx.
(30)

The special steady state “rest at lake” means y(x, t) = const and q(x, t) = 0.

The flux function and discretisation of the right hand side are in the form

F n,1
j+1/2 = 1

2
(Q̄n

j + Q̄n
j+1)− ∆x

2∆t
(Ȳ n

j+1 − Ȳ n
j ),

F n,2
j+1/2 = 1

2

[
(Q̄n

j )2

Ȳ n
j −B̄j

+
(Q̄n

j+1)
2

Ȳ n
j+1−B̄j+1

+ 1
2
g(Ȳ n

j − B̄j)+

+ 1
2
g(Ȳ n

j+1 − B̄j+1)
]− ∆x

2∆t
(Q̄n

j+1 − Q̄n
j ),

S1,n
j = 0,

Sn,2
j = − g

4∆x
(B̄j+1 − B̄j)

(Ȳ n
j+1 − B̄j+1 + Ȳ n

j − B̄j + Ȳ n
j − B̄j + Ȳ n

j−1 − B̄j−1).

This scheme preserves only special steady state “rest at lake”. But in general these
methods are not suitable for computation steady states [7]. One of their big disad-
vantages is the relatively large numerical dissipation.

The next type of the central method is for example Rusanovov scheme in semi-
discrete form

d
dt
Q̄j = − 1

2∆x
[f(Q̄j+1)− f(Q̄j−1)] + 1

2∆x
[âj+1/2(Q̄j+1 − Q̄j)−

−âj−1/2(Q̄j − Q̄j−1)],
(31)

where
âj+1/2 = max

p
{max{λp

j , λ
p
j+1}}.

This scheme can be written in the conservative form (19) where the numerical fluxes
have the form

Fj+1/2 =
1

2
[f(Q̄j) + f(Q̄j+1)]− 1

2
|âj+1/2|(Q̄j+1 − Q̄j).

And as will be mentioned in the next section, this scheme can be rewritten in the
fluctuation form.
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6. Upwind methods

6.1. Scalar case

In this subsection we consider the equation

qt + aqx = 0, x ∈ R, t ∈ (0, T ), a ∈ R, (32)

q(x, 0) = q0(x), x ∈ R.

This advection equation has known solution q(x, t) = q0(x − at). Usually the REA
algorithm (reconstruct-evolve-average) is used for the solution. This algorithm is
based on the piecewise polynomial reconstruction of the solution from the quantities
Q̄j(t). This reconstruction we denote Q̂j(x, t) for x ∈ (xj−1/2, xj+1/2). This recon-
struction is considered to be the initial condition for solving sets of the Riemann
problems (in this case we can use the form of the solution).

Using the forward differences for time discretisation in the semidiscrete scheme (19)
the numerical flux has the form

Fj+1/2 =
1

2
a(Q−

j+1/2 + Q+
j+1/2)−

1

2
|a|(Q+

j+1/2 −Q−
j+1/2), (33)

where
Q+

j+1/2 = Q̂j+1(xj+1/2+, t), Q−
j+1/2 = Q̂j(xj+1/2−, t).

This scheme can be rewritten into so called fluctuation form

dQ̄j

dt
=
−1

∆x
(a−∆Qj+1/2 + a∆Qj + a+∆Qj−1/2), (34)

where fluctuations are defined

a∆Qj = a(Q−
j+1/2 −Q+

j−1/2),

a−∆Qj+1/2 = a−(Q+
j+1/2 −Q−

j+1/2),

a+∆Qj−1/2 = a+(Q+
j−1/2 −Q−

j−1/2),

where a+ = max{a, 0}, a− = min{a, 0}.
For simple piecewise constant reconstruction Q+

j+1/2 = Q̄j+1, Q−
j+1/2 = Q̄j we

obtain for a > 0
d

dt
Q̄j = − a

∆x
(Q̄j − Q̄j−1), (35)

and for a < 0
d

dt
Q̄j = − a

∆x
(Q̄j+1 − Q̄j). (36)

6.2. Linear systems

Now we consider linear system

qt + Aqx = 0, x ∈ R, t ∈ (0, T ), (37)

q(x, 0) = q0(x), x ∈ R,
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where A is real matrix m × m. We suppose that the matrix A has distinct real
eigenvalues and is diagonalisable i.e. exists regular matrix R such that Λ = R−1AR,
where Λ is diagonal matrix. So we can rewrite (37) to the form

γt + Λγx = 0, (38)

where γ(x, t) = R−1q(x, t). The system (38) represents m advection equations which
can be solved analogously as in the scalar case.

After rewriting the system (37) to conservation form, where f(q) = Aq, and
solving sets of the generalized Riemann problems we get the numerical fluxes in the
form

Fj+1/2 =
1

2
A(Q−

j+1/2 + Q+
j+1/2)−

1

2
|A|(Q+

j+1/2 −Q−
j−1/2), (39)

and in analogy to the previous section we can write the conservative scheme in the
fluctuation form

dQ̄j

dt
=
−1

∆x
(A−∆Qj+1/2 + A∆Qj + A+∆Qj−1/2), (40)

where
A∆Qj = A(Q−

j+1/2 −Q+
j−1/2),

A−∆Qj+1/2 =
m∑

p=1

λ−,p∆γp
j+1/2r

p,

A+∆Qj−1/2 =
m∑

p=1

λ+,p∆γp
j−1/2r

p,

∆Qj+1/2 =
m∑

p=1

∆γp
j+1/2r

p,

∆Qj = Q−
j+1/2 −Q+

j−1/2,

A+ = RΛ+R−1, A− = RΛ−R−1, Λ+ = diag(max{λp, 0}), Λ− = diag(min{λp, 0}),
|Λ| = diag(|λp|), ∆γj+1/2 = R−1

j+1/2∆Qj+1/2.

6.3. Nonlinear systems

Now we consider nonlinear system

qt + [f(q)]x = 0, x ∈ R, t ∈ (0, T ), (41)

q(x, 0) = q0(x), x ∈ R.

The fluctuation form of the conservative scheme is as follows

dQ̄j

dt
=
−1

∆x
[A−(∆Qj+1/2) + A(∆Qj) + A+(∆Qj−1/2)], (42)

A(∆Qj) = f(Q−
j+1/2)− f(Q+

j−1/2),

A−(∆Qj+1/2) = F−j+1/2 − f(Q−
j+1/2),

A+(∆Qj−1/2) = f(Q+
j−1/2)− F+

j−1/2.

31



This scheme can be written in the form
d

dt
Q̄j = − 1

∆x
[F−j+1/2 − F+

j−1/2]. (43)

The fluctuations have following property based on the Rankine-Hugoniot condi-
tion for the discontinuities

f(Q+
j+1/2)− f(Q−

j+1/2) = A+(∆Qj+1/2) + A−(∆Qj+1/2), (44)

this leads to F−j+1/2 = F+
j+1/2 ∀j ∈ Z.

It is difficult to solve nonlinear Riemann problems to take exact solution. It is
efficient to use some approximate Riemann solvers such as HLL or Roe’s solvers.
Details can be found in [3] and [4].

6.3.1. Roe’s solver

This approximate Riemann solver is based on the approximation of the nonlinear
system qt + [f(q)]x ≡ qt + A(q)qx = 0, where A(q) is the Jacobian matrix, by the
linear system qt +Aj+1/2qx = 0, where Aj+1/2 is the Roe-averaged Jacobian matrix,
which is defined by suitable combination of A(Qj) and A(Qj+1).

We define intercell numerical fluxes

Fj+1/2 =
1

2
[f(Q̄j) + f(Q̄j+1)]− 1

2
|Aj+1/2|(Q̄j+1 − Q̄j), (45)

and intercell fluctuations in the scheme (42) by

A−(∆Qj+1/2) =
m∑

p=1

λ−,p
j+1/2r

p
j+1/2∆γp

j+1/2,

A+(∆Qj+1/2) =
m∑

p=1

λ+,p
j+1/2r

p
j+1/2∆γp

j+1/2,
(46)

where rp
j+1/2 are eigenvectors of the Roe matrix Aj+1/2, λp

j+1/2 are eigenvalues called

Roe’s speeds and ∆γj+1/2 = R−1
j+1/2∆Qj+1/2.

6.3.2. HLL solver

This solver does not use the explicit linearization of the Jacobian matrix, but the
solution is constructed by the consideration of two discontinuities, propagating at
speeds s1 and s2. The middle state Q̄j+1/2 is determined by conservation law

f(Q̄j+1)− f(Q̄j) = s2
j+1/2(Q̄j+1 − Q̄j+1/2) + s1

j+1/2(Q̄j+1/2 − Q̄j), (47)

Q̄j+1/2 =
f(Q̄j+1)− f(Q̄j)− s2

j+1/2Q̄j+1 + s1
j+1/2Q̄j

s1
j+1/2 − s2

j+1/2

. (48)

When the special choice of the characteristic speeds called Einfeld speeds is used,
the solver is called HLLE. The Einfeld speeds are defined by

s1
j+1/2 = min

p
{min{λp

j , λ
p
j+1/2}}, s2

j+1/2 = max
p
{max{λp

j+1, λ
p
j+1/2}}, (49)

where λp
j are eigenvalues of the matrix Aj = f ′(Q̄j).
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6.4. Augmented systems

Consider the model for river flow through the varying rectangular channel (4) as
was presented in Section 1 and its augmented formulation (13) and (14) presented
in Section 2. The eigencomponents for the matrix Ď are

λ1 = 0, λ2 = 0, λ3 = 2u, λ4 = u +

√
ga

l
, λ5 = u−

√
ga

l
,

and
r1 = [− ga

λ4λ5
, 0, 0,−1, ga]T , r2 = [− ga2

l2λ4λ5
, 0, 1, 0, ga2

2l2
]T ,

r3 = [0, 0, 0, 0, 1]T , r4 = [1, λ4, 0, 0, λ
2
4]

T ,

r5 = [1, λ5, 0, 0, λ
2
5]

T .

We realize the decomposition for the augmented quasilinear formulation i.e. for
the system of five equations with Einfeld speeds

s1 = 0, s2 = 0, s3 = s4 + s5,

s4 = min
p
{min{λp

L, λp
LR}}, s5 = max

p
{max{λp

R, λp
LR}},

and approximation of the eigenvectors of the matrix Ď

r1 ≈ [ gĀ
gs4s5

, 0, 0,−1, gĀds4s5

gs4s5
]T ,

r2 ≈ [ gĀ2

LLLR gs4s5
, 0, 1, 0, gĀ2 ds4s5

LLLR gs4s5
− gÃ2

2LLLR
]T ,

r3 ≈ [0, 0, 0, 0, 1]T ,

r4 ≈ [1, s4, 0, 0, s
2
4]

T ,

r5 ≈ [1, s5, 0, 0, s
2
5]

T ,

where s̃4s5 = −Ū2 + gĀL̄
LLLR

, ŝ4s5 = −|ULUR|+ gĀL̄
LLLR

, λp
L and λp

R are eigenvalues of the

Jacobian matrix for the left end right values and λp
LR are eigenvalues of the Roe’s

matrix.
The decomposition of the augmented system has the following form




∆A
∆Q
∆L
∆B
∆Φ




=
5∑

p=1

γpr
p.

We have five linearly independent eigenvectors. The approximation is chosen to be
able to prove the consistency and provide the stability of the algorithm. In some spe-
cial cases this scheme is conservative and we can prove the positive semidefiniteness,
but only under the additional assumptions.
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The basic version of the numerical scheme is in the form

dQ̄j

dt
= − 1

∆x
[A−(∆Qj+1/2) + A+(∆Qj−1/2)], (50)

where fluctuations are defined by

A−(∆Qj+1/2) =
m∑

p=1

sp,n
j+1/2

<0

γp
j+1/2r

p
j+1/2,

A+(∆Qj+1/2) =
m∑

p=1

sp,n
j+1/2

>0

γp
j+1/2r

p
j+1/2.

7. Central-upwind method

Now we introduce so called central-upwind scheme. These schemes combine ad-
vantages of the upwind schemes i.e. lower numerical diffusion and usability for the
steady states with advantages of the central schemes i.e. positive semidefiniteness.
These schemes are Riemann solver free. This scheme can be found in [2]

One simple method in the conservative form (19) has the numerical flux in the
form

Fj+1/2 =
a+

j+1/2f(Qj)− a−j+1/2f(Qj+1)

a+
j+1/2 − a−j+1/2

+
a+

j+1/2a
−
j+1/2

a+
j+1/2 − a−j+1/2

[Qj+1 −Qj] , (51)

where

a+
j+1/2 = max {λN (f ′(Qj)) , λN (f ′(Qj+1)) , 0} ,

a−j+1/2 = min {λ1 (f ′(Qj)) , λ1 (f ′(Qj+1)) , 0} ,

represent maximal speeds of the propagation of the waves in the points xj+1/2 and
we suppose λ1 < λ2, . . . , λN .

8. Decomposition of the flux function

Described schemes can be represented and understood by the same way. The
amount of information about the structure of the solution of the Riemann problem
included into schemes causes the differences between schemes. This information is
employed in decomposition of the difference of the flux function.
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Central schemes for example Lax-Friedrichs scheme are based on the following
decomposition

f(Q+
j+1/2)−f(Q−

j+1/2) = s1(Q+
j+1/2−Q∗

j+1/2)+s2(Q∗
j+1/2−Q−

j+1/2) =
2∑

p=1

Zp
j+1/2, (52)

where s1 = ∆x
∆t

and s2 = −∆x
∆t

. Next we define fluctuations

A−(∆Qj+1/2) =
2∑

p=1

sp<0

Zp
j+1/2,

A+(∆Qj+1/2) =
2∑

p=1

sp>0

Zp
j+1/2.

(53)

We can use the relation (42) and we can derive the scheme in the conservative form.
These schemes are not suitable for the semidiscrete formulation because of the infinite
speed (∆t → 0) of the propagating discontinuities which is typical for the parabolic
type of the equations.

The semidiscrete central methods suitable for the semidiscrete formulation use
estimate of upper bound of maximal speed of the propagating discontinuities. They
are based on the following decomposition

f(Q+
j+1/2)−f(Q−

j+1/2) = sj+1/2(Q
+
j+1/2−Q∗

j+1/2)−sj+1/2(Q
∗
j+1/2−Q−

j+1/2) =
2∑

p=1

Zp
j+1/2,

(54)
where

sj+1/2 = max
p
{max{|λp(Q−

j+1/2)|, |λp(Q+
j+1/2)|}}.

We define

A−(∆Qj+1/2) =
2∑

p=1

sp
j+1/2

<0

Zp
j+1/2,

A+(∆Qj+1/2) =
2∑

p=1

sp
j+1/2

>0

Zp
j+1/2.

(55)

The central-upwind methods can be identified with HLL solver. The decomposi-
tion has the form
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f(Q̄j+1)− f(Q̄j) = s2
j+1/2(Q̄j+1 − Q̄j+1/2) + s1

j+1/2(Q̄j+1/2 − Q̄j) =
2∑

p=1

Zp
j+1/2, (56)

where s1
j+1/2 = a+

j+1/2 and s1
j+1/2 = a−j+1/2. And we define

A−(∆Qj+1/2) =
2∑

p=1

sp
j+1/2

<0

Zp
j+1/2,

A+(∆Qj+1/2) =
2∑

p=1

sp
j+1/2

>0

Zp
j+1/2.

(57)

All described schemes can be understood in the same way.

9. Conclusion

We presented various numerical schemes for solving fluid flow problems with
various properties. We show that all described schemes can be understood in the
same way.
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FINITE ELEMENT MODELLING OF SOME INCOMPRESSIBLE
FLUID FLOW PROBLEMS∗

Pavel Burda, Jaroslav Novotný, Jakub Š́ıstek, Alexandr Damašek

Abstract

We deal with modelling of flows in channels or tubes with abrupt changes of the
diameter. The goal of this work is to construct the FEM solution in the vicinity of
these corners as precise as desired. We present two ways. The first approach makes
use of a posteriori error estimates and the adaptive strategy. The second approach is
based on the asymptotic behaviour of the exact solution in the vicinity of the corner
and on the a priori error estimate of the FEM solution. Then we obtain the solution
with desired precision also in the vicinity of the corner, though there is a singularity.
Numerical results are demonstrated on a 2D example.

1. Introduction

One of the challenging problems in fluid dynamics is reliable modelling of flows
in channels or tubes with abrupt changes of the diameter, which appear often in
engineering practice.

We present two ways for getting desired precision of the FEM solution in the
vicinity of corners. Both make use of qualitative properties of the mathematical
model of flow that is on the Navier-Stokes equations (NSE) for incompressible fluids.

The first approach makes use of a posteriori error estimates of the FEM solution
which is carefully derived to trace the quality of the solution. Especially the constant
in the a posteriori error estimate is investigated with care. Then we use the adaptive
strategy to improve the mesh and thus to improve the FEM solution.

The second approach stands on two legs. One is the asymptotic behaviour of the
exact solution of the NSE in the vicinity of the corner. This is obtained using some
symmetry of the principal part of the Stokes equation and application of the Fourier
transform. Second leg is the a priori error estimate of the FEM solution, where
we estimate the seminorm of the exact solution by means of the above obtained
asymptotics. On the mesh we then obtain the solution with desired precision also in
the vicinity of the corner, though there is a singularity.

2. Navier-Stokes equations for incompressible viscous fluids

Let Ω be an open bounded domain in R2 filled with a fluid and let Γ be its
Lipschitz continuous boundary. The generic point of R2 is denoted by x = (x1, x2)

T

considered in meters and t denotes time variable considered in seconds.

∗This work was supported by grant No. 106/08/0403 of the Czech Science Foundation and by
the State Research Project No. MSM 684 0770010.
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2.1. Unsteady two-dimensional flow

We deal with isothermal flow of Newtonian viscous fluids with constant density.
Such flow is modelled by the Navier-Stokes system (nonconservative form):

ρ

(
∂u

∂t
+ (u · ∇)u

)
− µ∆u +∇pr = ρ f in Ω× [0, T ], (1)

∇ · u = 0 in Ω× [0, T ], (2)

where

• u = (u1, u2)
T denotes the vector of flow velocity [m/s], it is a function of

x and t,

• pr denotes the pressure [Pa], which is a function of x and t,

• ρ denotes the density of the fluid [kg/m3],

• µ denotes the dynamic viscosity of the fluid [Pa·s], supposed to be constant,

• f = f(x, t) is the density of volume forces per mass unit [N/m3].

Dividing both sides of the momentum equation (1) by ρ and leaving the continuity
equation (2) unchanged we obtain

∂u

∂t
+ (u · ∇)u− ν∆u +∇p = f in Ω× [0, T ], (3)

∇ · u = 0 in Ω× [0, T ], (4)

where

• p = pr/ρ denotes the pressure divided by the density [Pa· m3 /kg],

• ν = µ/ρ denotes the kinematic viscosity of the fluid [m2/s].

The system is supplied with the initial condition

u = u0 in Ω, t = 0, (5)

where ∇ · u0 = 0 and with the boundary conditions

u = g on Γg × [0, T ], (6)

−ν(∇u)n + pn = 0 on Γh × [0, T ], (7)

where

• Γg and Γh are two subsets of Γ satisfying Γ = Γg ∪ Γh, µR1(Γg ∩ Γh) = 0,

• n denotes the unit outer normal vector to the boundary Γ.

Introduced g is a given function of x and t satisfying in the case of Γ = Γg for all
t ∈ [0, T ]

∫

Γ

g · n dΓ = 0.
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2.2. Steady 2D Navier-Stokes problem

In the case of steady two-dimensional flow, the Navier-Stokes equations are re-
duced to

(u · ∇)u− ν∆u +∇p = f in Ω, (8)

∇ · u = 0 in Ω (9)

and boundary conditions to

u = g on Γg, (10)

−ν(∇u)n + pn = 0 on Γh. (11)

2.3. Steady 2D Stokes problem

In the case of the Stokes flow the first (nonlinear) term in (8) is omitted:

−ν∆u +∇p = f in Ω , (12)

∇ · u = 0 in Ω (13)

and boundary conditions are the same as in (10), (11).

2.4. Variational formulation of Navier-Stokes equations

Let L2(Ω) be the space of square integrable functions on Ω and let L2(Ω)/R be
the space of functions in L2(Ω) ignoring an additive constant. Let H1(Ω) and H1

0 (Ω)
be the Sobolev spaces defined as

H1(Ω) ≡
{

v | v ∈ L2(Ω),
∂v

∂xi

∈ L2(Ω), i = 1, 2
}

,

H1
0 (Ω) ≡

{
v | v ∈ H1(Ω),Tr v = 0

}
,

where Tr is the trace operator Tr : H1(Ω) −→ L2(Γ) and derivatives are considered
in the weak sense.

The inner product and norm in the space L2(Ω) are defined as

(u, v)L2(Ω) ≡
∫

Ω

uv dΩ , ‖v‖2
L2(Ω) ≡

∫

Ω

v2dΩ

and the norm of function v in the Sobolev space H1(Ω) is considered as

‖v‖2
H1(Ω) ≡

∫

Ω

(
v2 +

2∑

k=1

(
∂v

∂xk

)2
)

dΩ .

Sometimes, the notation ‖·‖L2(Ω) is shortened to ‖·‖0 and ‖·‖H1(Ω) to ‖·‖1. Similarly,
the notation (u, v)L2(Ω) is shortened to (u, v)0.
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Let us define vector function spaces Vg and V by

Vg ≡
{
v = (v1, v2)

T | v ∈ [H1(Ω)]2;Tr vi = gi, i = 1, 2
}

,

V ≡
{
v = (v1, v2)

T | v ∈ [H1
0 (Ω)]2

}
.

Let us note, that the norm of vector function v in the spaces Vg and V is then

‖v‖2
[H1(Ω)]2 ≡

2∑
i=1

∫

Ω

(
v2

i +
2∑

k=1

(
∂vi

∂xk

)2
)

dΩ

and the norm of vector function v in the space [L2(Ω)]2 is

‖v‖2
[L2(Ω)]2 ≡

2∑
i=1

∫

Ω

v2
i dΩ .

The weak unsteady Navier-Stokes problem means seeking of u(t) ∈ Vg, u(t) =
(u1(t), u2(t))

T , and p(t) ∈ L2(Ω)/R satisfying for any t ∈ [0, T ] and ∀ v ∈ V and
∀ ψ ∈ L2(Ω):

∫

Ω

∂u

∂t
· vdΩ +

∫

Ω

(u · ∇)u · vdΩ +ν

∫

Ω

∇u : ∇vdΩ−
∫

Ω

p∇ · vdΩ =

∫

Ω

f · vdΩ ,

(14)∫

Ω

ψ∇ · udΩ = 0 , (15)

u− ug ∈ V. (16)

The operation ∇u : ∇v is defined as

∇u : ∇v ≡ ∂ux

∂x

∂vx

∂x
+

∂ux

∂y

∂vx

∂y
+

∂uy

∂x

∂vy

∂x
+

∂uy

∂y

∂vy

∂y
.

Similarly, the weak steady Navier-Stokes problem reads:
Seek u = (u1, u2)

T ∈ Vg and p ∈ L2(Ω)/R satisfying ∀ v ∈ V and ∀ ψ ∈ L2(Ω):
∫

Ω

(u · ∇)u · vdΩ + ν

∫

Ω

∇u : ∇vdΩ−
∫

Ω

p∇ · vdΩ =

∫

Ω

f · vdΩ , (17)
∫

Ω

ψ∇ · udΩ = 0 , (18)

u− ug ∈ V. (19)

In case of the weak steady Stokes problem instead of (17) we require

ν

∫

Ω

∇u : ∇vdΩ−
∫

Ω

p∇ · vdΩ =

∫

Ω

f · vdΩ . (20)
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3. Finite element method for Navier-Stokes equations

Let us divide the domain Ω (supposed to be polygonal from now) into N elements
TK , K = 1, 2, . . . , N , of a triangulation T such that

N⋃
K=1

TK = Ω ,

µR2 (TK ∩ TL) = 0, K 6= L .

Let hK mean the diameter of the element TK .

3.1. Function spaces for velocity and pressure approximation

To solve the Navier-Stokes equations, different polynomial approximation for ve-
locities and for pressure are usually chosen. Equal order approximation is easy to
implement, but pressure exhibits instability. Approximation with different order is
more suitable for practical computing, cf. [3]. I. Babuška and F. Brezzi introduced
a condition (also called inf -sup condition) limitting the choice of combinations of
approximation

∃CB > 0, const. ∀qh ∈ Qh ∃vh ∈ Vgh (qh,∇ · vh)0 ≥ CB‖qh‖0‖vh‖1 , (21)

where Qh and Vgh are the function spaces for approximation of pressure and velocity.
Condition (21) is important for stability. It is satisfied, e.g., for Taylor-Hood elements
we use.

3.2. Taylor-Hood finite elements

In this paper we apply Taylor-Hood finite elements on triangles and quadrilater-
als. Values of velocity are approximated at corner nodes and midsides and values of
pressure at corner nodes (Figure 1). It corresponds to the following function spaces
on element TK :

• triangle
vi ∈ P2(TK), i = 1, 2, i.e. polynomials of the second order,
p ∈ P1(TK), i.e. linear polynomials

• quadrilateral
vi ∈ Q2(TK), i = 1, 2, i.e. polynomials of the second order for each coordinate,
p ∈ Q1(TK), i.e. bilinear polynomials.

Let us employ the notation

Rm(TK) =

{
Pm(TK), if TK is a triangle
Qm(TK), if TK is a quadrilateral

(22)

and let C(Ω) denote the space of continuous functions on Ω.
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Fig. 1: Taylor-Hood reference elements.

Application of Taylor-Hood finite elements leads to the final approximation on
the domain Ω satisfying uh ∈ Vgh and ph ∈ Qh where

Vgh =
{
vh = (vh1 , vh2)

T ∈ [C(Ω)]2; vhi
|TK
∈ R2(TK), K = 1, . . . , N, i = 1, 2, (23)

vh = g at nodes on Γ
}

,

Qh =
{

ψh ∈ C(Ω); ψh |TK
∈ R1(TK), K = 1, . . . , N

}
. (24)

We also need the space

Vh =
{
vh = (vh1 , vh2)

T ∈ [C(Ω)]2; vhi
|TK
∈ R2(TK), K = 1, . . . , N, i = 1, 2, (25)

vh = 0 at nodes on Γ
}

.

Since these spaces satisfy Vgh ⊂ Vg, Vh ⊂ V , and Qh ⊂ L2(Ω)/R for prescribed
arbitrary value of pressure (e.g. ph = 0) in one node, we can introduce approximate
steady Navier-Stokes problem:
Seek uh ∈ Vgh and ph ∈ Qh satisfying
∫

Ω

(uh · ∇)uh · vhdΩ + ν

∫

Ω

∇uh : ∇vhdΩ−
∫

Ω

ph∇ · vhdΩ =

∫

Ω

f · vhdΩ, ∀vh ∈ Vh,

(26)∫

Ω

ψh∇ · uhdΩ = 0, ∀ψh ∈ Qh , (27)

uh − ugh ∈ Vh , (28)

where ugh ∈ Vgh is the projection of ug onto the space Vgh.

42



Similarly we define approximate steady Stokes problem, just omitting the first
term in (26).

Using the shape-regular triangulation and refining the mesh such that hmax → 0,
where

hmax = max
K

hK ,

the solution of the approximated problem converges to the solution of the continuous
problem (for more detail see e.g. [3]).

4. Asymptotic behaviour of the solution near corners

We are concerned with flow in tubes and channels with abrupt changes of diam-
eter. The results are based on the paper [4], where we investigated the pipe flow
(axisymmetric). The asymptotic behaviour of plane flow with corner singularities
was studied e.g. by Kondratiev [17]. The asymptotics of the biharmonic equation
for the stream function ψ are basic. Let us e.g. take the case of the nonconvex
domain with the internal angle ω = 3

2
π, cf. Figure 2. Then, in polar coordinates we

get the expansion

ψ(ρ, ϑ) = ρ1.54448374 φ(ϑ) + . . . (lower order terms), (29)

where ρ is the distance from the corner, see [4]. This result is the same as that
obtained in desk geometry by Kondratiev [17], where

ψdesk(ρ, ϑ) = ρ1.5445 φd(ϑ) + . . . (l.o.t.). (30)

So we get the expansion for the velocities:

ul(ρ, ϑ) = ρ0.54448374ϕl(ϑ) + . . . (l.o.t.) , l = 1, 2, (31)

where the functions ϕl do not depend on ρ, the distance from the corner. This
expansion exhibits the infinite gradient of velocity near the corner.

In Section 6 our aim is to make use of the information on the local behaviour of
the solution near the corner point, in order to design local meshing subordinate to
the asymptotics.

5. A posteriori error estimates for the Navier-Stokes equation

At present various a posteriori error estimates for the Stokes and Navier-Stokes
problems are available. We mention e.g. Babuška, Rheinboldt [2], Ainsworth,
Oden [1], Verfürth [19]. Other references can be found in [5].
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5.1. A posteriori estimates for 2D steady Navier-Stokes equations

Let us consider the steady Navier-Stokes problem (8), (9), with boundary condi-
tions (10), (11).

For the discretization by finite elements we use again Taylor-Hood elements
P2/P1.

Suppose that exact solution of the problem is denoted by (u1, u2, p) and the
approximate finite element solution by (uh

1 , u
h
2 , ph). The exact solution differs from

the approximate solution in the error

(eu1 , eu2 , ep) ≡ (u1 − uh
1 , u2 − uh

2 , p− ph). (32)

For the solution (u1, u2, p) we denote

U2(u1, u2, p, Ω) ≡ ‖(u1, u2, p)‖2
V ≡ ‖(u1, u2)‖2

1,Ω + ‖p‖2
0,Ω (33)

≡
∫

Ω

(
u2

1 + u2
2 +

(
∂u1

∂x

)2

+

(
∂u1

∂y

)2

+

(
∂u2

∂x

)2

+

(
∂u2

∂y

)2
)

dΩ +

∫

Ω

p2dΩ.

The estimate proved in [5], [6], [7] for the Stokes problem can be generalized to the
Navier-Stokes equations:

‖(eu1 , eu2)‖2
1,Ω + ‖ep‖2

0,Ω ≤ E2(uh
1 , u

h
2 , p

h), (34)

where (cf. [19])

E2(uh
1 , u

h
2 , p

h, Ω) ≡ C

[ ∑

K∈T h

h2
K

∫

TK

(
r2
1 + r2

2

)
+

∑

K∈T h

∫

TK

r2
3dΩ

]
, (35)

where hK denotes the diameter of the element TK and ri, i = 1, 2, 3, are the residuals

r1 = fx −
(

uh
1

∂uh
1

∂x
+ u2

∂uh
1

∂y

)
+ ν

(
∂2uh

1

∂x2
+

∂2uh
1

∂y2

)
− ∂ph

∂x
, (36)

r2 = fy −
(

uh
1

∂uh
2

∂x
+ uh

2

∂uh
2

∂y

)
+ ν

(
∂2uh

2

∂x2
+

∂2uh
2

∂y2

)
− ∂ph

∂y
, (37)

r3 =
∂uh

1

∂x
+

∂uh
2

∂y
. (38)

Let us note that due to our practical experience we use only the element residuals.
Denote also

E2(uh
1 , u

h
2 , p

h, TK) ≡ C

[
h2

K

∫

TK

(
r2
1 + r2

2

)
+

∫

TK

r2
3dΩ

]
. (39)

It is important, that C does not depend on the mesh size and so can be determined
experimentally for general situation.
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By computing of the estimates (11) we obtain absolute numbers, that will depend
on given quantities in different problems. We are mainly interested in the error
related to the computed solution, i.e. relative error. This is given by the ratio of
the absolute norm of the solution error related to the unit area of the element TK ,

1
|TK | E2(uh

1 , u
h
2 , p

h, TK), and the solution norm on the whole domain Ω, related to unit

area 1
|Ω| ‖(uh

1 , u
h
2 , p

h)‖2
V,Ω, i.e.

R2(uh
1 , u

h
2 , p

h, TK) =
|Ω| E2(uh

1 , u
h
2 , p

h, TK)

|TK | ‖(uh
1 , u

h
2 , p

h)‖2
V,Ω

. (40)

5.2. Determination of the constant C

In papers [7], [8] we investigated the problem of the constant C in the a posteriori
estimates. Comparing analytical and finite element solution of some model problems
we found the appropriate value of the constant. For details we refer to [7] and [8].

5.3. Numerical results and application of estimates to the construction of
adaptive meshes

Consider two-dimensional flow of viscous, incompressible fluid described by
Navier-Stokes equations in domain with corner singularity, cf. Figure 2.

Fig. 2: Geometry of the channel.

Due to the symmetry, we solve the problem only on half of the channel, cf. Fig-
ure 3. On the inflow we consider parabolic velocity profile, on the outflow ‘do nothing’
boundary condition. On the upper wall no-slip condition and on the lower wall con-
dition of symmetry (i.e. only y-component of velocity equals zero). We consider the
following parameters: ν = 0.0001 m2/s, uin = 1 m/s. The initial mesh is in Figure 3.

Fig. 3: Initial finite element mesh.

Elements, where the relative error by (40) exceeds 3%, are refined and new
solution together with new error estimates is computed. The third refinement is
seen in Figure 4.

The relative errors in the vicinity of the left corner are shown in Figure 5.
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Fig. 4: Finite element mesh after third refinement.

Fig. 5: Relative errors on elements of the third refinement.

Numerical results of velocity components and pressure are in Figures 6 and 7.
The corner singularities caused by nonconvex corners are approximated with the
accuracy indicated in Figure 5.

6. Application of a priori estimates for Navier-Stokes equations

The goal of this section is to summarize authors’ experience with the applica-
tion of a priori error estimates of the finite element method in computational fluid
dynamics. This approach is applied to generate the computational mesh in the pur-
pose of uniform distribution of error on elements and is used in precise solution on
domains with corner-like singularities. Incompressible viscous flow modelled by the
steady Navier-Stokes equations (17)–(19) is considered.

One possible way to improve accuracy of solution by the FEM is to refine the
mesh near places, where singularity can appear, by means of adaptive refinement
based on a posteriori error estimates or error estimators, as presented in Section 5.
This method could be quite time demanding, since it needs several runs of solu-
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Fig. 6: After third refinement: velocity ux (left) and velocity uy (right).

Fig. 7: Pressure p after third refinement.

tion. Completely different method is applied in this section. Computational mesh is
prepared before the first run of the solution.

Numerical results are presented for flows in a channel with sharp obstacle and in
a channel with sharp extension. Let us note that some other results were published
in [9].

6.1. Algorithm for generation of computational mesh

In the derivation of the algorithm, two main ‘tools’ are used. The first is a pri-
ori estimate of the finite element error for the Navier-Stokes equations (17)–(19)
(cf. [13]),

‖∇(u− uh)‖L2(Ω) ≤ C
[(∑

K

h2k
K | u |2

Hk+1(TK)

)1/2

+
(∑

K

h2k
K | p |2Hk(TK)

)1/2]
, (41)

‖p− ph‖L2(Ω) ≤ C
[(∑

K

h2k
K | u |2

Hk+1(TK)

)1/2

+
(∑

K

h2k
K | p |2Hk(TK)

)1/2]
, (42)

where hK is the diameter of triangle TK of a triangulation T and k = 2 for Taylor-
Hood elements, which are applied in presented numerical experiments.
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The second tool is the asymptotic behaviour of the solution near the singularity.
In Section 4.2 (see also [4]), it was proved for the Stokes flow in axisymmetric tubes,
that for internal angle α = 3

2
π, the leading term of expansion of the solution for each

velocity component is

ui(ρ, ϑ) = ρ0.5445ϕi(ϑ) + . . . (l.o.t.), i = 1, 2 , (43)

where ρ is the distance from the corner, ϑ is the angle and ϕi is a smooth function.
The same expansion is known to apply to the plane flow (cf. [16]) and similar results
were also proved for the Navier-Stokes equations. Differentiating by ρ, we observe
∂ui(ρ,ϑ)

∂ρ
→ ∞ for ρ → 0.

Taking into account the expansion (43), we can estimate

| u |2Hk+1(TK)≈ C

rK∫

rK−hK

ρ2(γ−k−1) ρ dρ = C
[
−r

2(γ−k)
K + (rK − hK)2(γ−k)

]
, (44)

where rK is the distance of element TK from the corner, cf. Figure 8.
Putting estimate (44) into the a priori error estimate (41) or (42), we derive that

we should guarantee

h2k
K

[
−r

2(γ−k)
K + (rK − hK)2(γ−k)

]
≈ h2k

ref , (45)

in order to get the error estimate of order O(hk
ref ) uniformly distributed on elements.

From this expression, we compute element diameters using the Newton method in
accordance to chosen href . Similar idea was presented by C. Johnson for an elliptic
problem in [15].

6.2. Geometry and design of the mesh

The algorithm was applied to the channel with sudden intake of diameter (see
Figure 2). Due to symmetry, again the problem was solved only on the upper half
of the channel.

The diameters of elements were computed for values href = 0.1732 mm, k = 2,
γ = 0.5444837. We started in the distance r1 = 0.25 mm from the corner. This
corresponds to cca 3% of relative error on elements. Fourteen diameters of elements
were obtained. The detail of the mesh refinement is in Figure 8. More in [8].

The refined detail is connected to the rest of the coarse mesh. In Figure 9 final
mesh after the refinement is shown.

6.3. Measuring of error

To review the efficiency of the algorithm, we use a posteriori error estimates as
derived in Chapter 5, to evaluate the obtained error on elements. Suppose that the
exact solution of the problem is denoted as (u1, u2, p) and the approximate solution
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Fig. 8: Description of element variables (left), details of refined mesh (right).

0 0.05 0.1 0.15
0

0.02

Fig. 9: Final computational mesh for the channel.

obtained by the FEM as (uh
1 , u

h
2 , p

h). The exact solution differs from the approximate
solution in the error (eu1 , eu2 , ep) = (u1 − uh

1 , u2 − uh
2 , p− ph).

In adaptive mesh refinement in Sections 5.3–5.5 we used the error estimator (40).
In this chapter, for the similarity with a priori error estimate, we use the modified
absolute error defined as

A2
m(u1h, u2h, ph, TK , Ω, n) =

|Ω|E2(u1h, u2h, ph, TK)

|TK | U2(u1h, u2h, ph, Ω)
, (46)

where |TK | is the mean area of elements obtained as |TK | = |Ω|
n

, where n de-
notes the number of all elements in the domain and the symbols E2(u1h, u2h, ph, TK),
U2(u1h, u2h, ph, Ω) are defined in (33), (39).

6.4. Numerical results

Channel with sudden intake of diameter (results for Re = 1000)

In Figures 10-11, plots of entities that characterize the flow in the channel are
presented. In Figure 10, there are streamlines and a plot of the velocity component
ux. Plots of velocity component uy and pressure are in Figure 11. Note, that the fluid
flows from the right to the left on plots of ux, uy, and p for better view. Let us note
that the relative error on the elements never exceeded 3%. So the corner singularities
caused by nonconvex corners are approximated here with very high accuracy.

7. Conclusion

Presented work is mainly focused on flow problems with singularities caused by
corners in the solution domain and on the construction of the FEM solution in the
vicinity of these corners as precisely as desired.
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Fig. 10: Detail of streamlines (left) and velocity component ux (right).

Fig. 11: Velocity component uy (left) and pressure (right).

We presented two ways for getting desired precision of the FEM solution in the
vicinity of corners. Both make use of qualitative properties of the mathematical
model of flow. As a mathematical model we accept the Navier-Stokes equations
(NSE) for incompressible fluids.

The first approach described in Section 5 makes use of a posteriori error estimates
of the FEM solution which is carefully derived to trace the quality of the solution.
Especially the constant in the a posteriori estimate is investigated with care. Then
we use the adaptive strategy to improve the mesh and thus to improve the FEM
solution. Numerical results demonstrate the robustness of this approach.

The second approach stands on two columns. In Section 4 we gave the asymptotic
behaviour of the exact solution of the NSE in the vicinity of the corner. This is
obtained using some symmetry of the principal part of the Stokes equation, then
applying the Fourier transform and investigating the resolvent of the corresponding
operator. Second column is the a priori error estimate of the FEM solution, where
we estimate the seminorm of the exact solution by means of the above obtained
asymptotics. In Section 6, according to these ideas, we derive an algorithm for
designing the FEM mesh in advance (a priori). On the mesh we then obtain the
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solution with desired precision, namely in the vicinity of the corner, though there is
a singularity.

The applications in Section 6 confirm the achievement of the goal – to obtain
solution tinged with errors on elements satisfactorily small and uniformly distributed.
Using this approach, we can save a lot of computational time using mesh ‘prepared’
for expected solution.

Recently we dealt also with the stabilized version of FEM to enable the calculation
of flows with higher Reynolds numbers [10], [11]. We also combined stabilization
with presented achievements on a posteriori error estimates. Our achievements with
precise solution of problems with singularities may serve as an important tool for
verification, see [12].
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LINEAR STABILITY OF EULER EQUATIONS
IN CYLINDRICAL DOMAIN∗

Libor Čermák

Abstract
The linear stability problem of inviscid incompressible steady flow between two

concentric cylinders is investigated. Linearizing the transient behavior around a steady
state solution leads to an eigenvalue problem for linearized Euler equations. The dis-
crete eigenvalue problem is obtained by the spectral element method. The algorithm is
implemented in MATLAB. The developed program serves as a simple tool for numeri-
cal experimenting. It enables to state rough dependency of the stability on various
input velocity profiles.

1. Flow equations in the rotating cylindrical coordinate system

The inviscid incompressible flow in the cylindrical coordinate system (r, ϕ, z) ro-
tating about the z-axis with the angular velocity Ω0 is described by Euler equations

dwr

dt
− w2

ϕ

r
− 2Ω0wϕ − Ω2

0r +
1

%

∂p

∂r
= 0 ,

dwϕ

dt
+

wrwϕ

r
+ 2Ω0wr +

1

%r

∂p

∂ϕ
= 0 ,

dwz

dt
+

1

%

∂p

∂z
= 0 .

(1)

Here, wr, wϕ, and wz are radial, circumferential and axial velocities, p is the pressure,

d

dt
=

∂

∂t
+ wr

∂

∂r
+

wϕ

r

∂

∂ϕ
+ wz

∂

∂z
(2)

is the material derivative and % is the density. The continuity equation

1

r

∂

∂r
(rwr) +

1

r

∂wϕ

∂ϕ
+

∂wz

∂z
= 0 (3)

must be fulfilled as well. Equations (1)–(3) are presented, for example, in [1]. The
problem is solved in the domain Q between two coaxial cylinders,

Q = {(r, ϕ, z) | 0 < R1 ≤ r ≤ R2, 0 ≤ ϕ < 2π, 0 ≤ z ≤ L} , (4)

where S1 = Q ∩ {z = 0} and S2 = Q ∩ {z = L} are the pipe inlet and outlet,
respectively, Γ1 = Q∩ {r = R1} is the liquid-gas interface and Γ2 = Q∩ {r = R2} is
the pipe wall.

∗This work was supported by the Council of Czech Government MSM 0021630518.
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2. Linear stability

Let us suppose that the steady base flow is axially symmetric, described by
functions w0r(r, z), w0ϕ(r, z), w0z(r, z), and p0(r, z) and by corresponding boundary
conditions. To investigate the stability of the base flow to disturbances, equations
that govern the evolution of these perturbations are required. To this end, the base
flow is perturbed by disturbance velocities and pressure, i.e.

(wr, wϕ, wz, p) = (w0r, w0ϕ, w0z, p0) + ε(vr, vϕ, vz, σ) , (5)

and we examine, whether (wr, wϕ, wz, p) → (w0r, w0ϕ, w0z, p0) for t → ∞. If we
substitute from (5) into (1), (3), use the fact that the stationary flow functions w0r,
w0ϕ, w0z, p0 satisfy those equations, and if we neglect terms containing ε2, we obtain
linearized Euler equations

∂vr
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∂vr
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and the continuity equation

1

r

∂

∂r
(rvr) +

1

r

∂vϕ

∂ϕ
+

∂vz

∂z
= 0 . (7)

Boundary conditions are

vr = vϕ = vz = 0 on S1, σ = 0 on S2, vr = 0 on Γ2. (8)

We consider two types of boundary conditions on Γ1:

(a) if the surface tension effect is not taken into account, zero pressure is described,

σ = 0 on Γ1 ; (9)

(b) if the surface tension effect is taken into account, we proceed in accordance with
the ideas derived in [7] and [8]: we introduce the radial displacement ∆(ϕ, z, t)
of the boundary Γ1 and demand fulfillment of the impermeability equation

vr =
∂∆

∂t
+ w0z

∂∆

∂z
on Γ1 , (10)
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the Young-Laplace equation

σ = σp

(
∂2∆

∂z2
+

1

R2
1

∂2∆

∂ϕ2

)
on Γ1 , (11)

where σp is the surface tension coefficient, and the initial condition

∆ = 0 on Γ1 ∩ S1 . (12)

The stability problem consists in verifying whether

(vr, vϕ, vz, σ, ∆) → (0, 0, 0, 0, 0) for t →∞. (13)

If the condition (9) is prescribed on the boundary Γ1, we set ∆ = 0 in (13).

3. The eigenvalue problem

Let I =
√−1 be the imaginary unit and n be a positive whole number (so-called

azimuthal wave number). Using the transformation

(vr, vϕ, vz, σ, ∆) = eλt+Inϕ(ur, uϕ, uz, h, δ), (14)

we exclude the time t as well as the coordinate ϕ and obtain the eigenvalue problem
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r
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∂uz

∂z
= 0 . (18)

Here, λ is an eigenvalue and ur, uϕ, uz, and h are eigenfunctions (so-called normal
modes) in variables r and z defined on the rectangle

D = {(r, z) | 0 < R1 ≤ r ≤ R2, 0 ≤ z ≤ L} . (19)

The case n = 0 corresponds to the rotationally symmetric flow. If we take into
consideration the influence of the surface tension, we add moreover equations

λδ(z) + w0z(R1, z)δ′(z)− ur(R1, z) = 0 , (20)

σp

(
−δ′′(z) +

n2

R2
1

δ(z)

)
+ h(R1, z) = 0 , (21)
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where δ(z), z ∈ 〈0, L〉, is a function defined on the edge r = R1 of the domain D.
Boundary conditions are

ur = uϕ = uz = 0

ur = 0

h = 0

on

S1 ∩D ,

Γ2 ∩D ,

S2 ∩D .

(22)

If we do not consider surface tension influences, then the additional boundary con-
dition is

h = 0 on Γ1 ∩D , (23)

whereas in case, when the surface tension is considered, we have, besides equa-
tions (20), (21), the additional condition

δ = 0 for z = 0 . (24)

The stability, expressed by the relation (5), occurs if and only if all eigenvalues
of the problem (15)–(24) have negative real parts.

4. The discretization by the spectral element method

The approximate finite-dimensional eigenvalue problem is obtained by the spec-
tral element method, see e.g. [2], [6], [4]. Let us explain in brief how the approximate
eigenvalue problem can be obtained.

The rectangle D is divided into nr × nz concurrent rectangular elements Dij,
i = 1, 2, . . . , nr, j = 1, 2, . . . , nz, with side lengths dr = (R2 −R1)/nr and dz = L/nz

in the discretization of the r-axis and z-axis, respectively. All quantities ur, uϕ, uz,
h, w0r, w0ϕ and w0z are approximated by continuous piecewise polynomial functions,
which are on every element Dij polynomials of degree N uniquely determined by
their values at nodes of the Gauss-Legendre-Lobatto (GLL) product quadrature for-
mula of order 2N − 1, see e.g. [6]. If the surface tension is considered, δ is similarly
approximated by a continuous piecewise polynomial function, which is on every ele-
ment D1j polynomial of degree N uniquely determined by its values at nodes of the
GLL quadrature formula.

Further, the variational formulation is derived. Let ψr, ψϕ, ψz and ψh be test
functions of the same type as corresponding piecewise polynomial approximations of
ur, uϕ, uz, and h. Equations (15), (16), (17), and (18) are multiplied by ψr, ψϕ, ψz

and ψh and integrated over the domain D. The integral over the whole domain is
expressed as a sum of integrals over individual elements Dij and every from those
integrals is computed by the GLL product quadrature formula. Variational forms
connected with equations (20) and (21) are obtained similarly.

If we sum all equations and arrange unknown and free parameters in column
vectors u and ψ, respectively, we obtain

ψT (λB−A)u = 0 ,
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and as the vector ψ is arbitrary, we arrive at the generalized eigenvalue problem

Au = λBu . (25)

The matrix A is regular, nonhermitian, real for n = 0 and complex for n > 0.
The matrix B is diagonal and singular: diagonal coefficients corresponding to equa-
tions (18) and (21) are equal to zero, remaining diagonal coefficients are real and
positive. Infinite eigenvalues have no influence on the stability examination and
therefore we ignore them.

5. Numerical experiments

Example 1. Let us consider a hypothetical flow of water as if it was a solid body
movement, set

R1 = 0.015 [m] R2 = 0.15 [m]

L = 0.5 [m] % = 103 [kg ·m−3]

σp = 0.073 [N ·m] n = 0, 1, 2, 3

(26)

w0r = 0, w0ϕ = 0, w0z = C0 = const. and experiment with values of C0 ≥ 0, Ω0, nr,
nz, and N . The flow of this type is stable and numerical results have confirmed this.

Remark. Through numerous numerical tests based on the data (26) we have found
that the effects of surface tension are negligible. It is a good message saying that
a steady state solution can be computed using any CFD software (whereas consi-
dering surface tension influences do not belong to standard equipment of commercial
CFD software, setting the pressure on the boundary is a quite common instrument).

Example 2. We consider the case when the stationary velocity in the radial and
axial direction are constant, w0r = 0, w0z = C0 ≥ 0, and the circumferential velocity
is a function of the radial variable r,

w0ϕ = r(ae−r/b − Ω0) . (27)

Constants a > 0, b > 0 are optional parameters: c0ϕ = w0ϕ + Ω0r = are−r/b

approaches its maximal value for r = b, a influences max |c0ϕ(r)|. We use again the
data (26).

If we set C0 = 0, n = 0 (which means that only axisymmetric perturbations
were permitted) and instead of the boundary condition (23) we demanded ur = 0 for
r = R1, we obtained the stability just when R2 < 2b, which is in coincidence with
the well known Rayleigh’s criterion, see e.g. [5]. Further, an increase of C0 caused
an increase of the stability (i.e. max Re(λ) of all finite λ was decreased).

For C0 = 0, n > 0 we did not obtain the stability for neither a nor b. If C0 was
increased, the stability turned up (for appropriate values of a and b).

Another velocity profiles for c0ϕ = w0ϕ + Ω0r were created interactively. A given
set of discrete points was interpolated by means of a cubic spline and then the
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dependence of the stability on the velocity w0ϕ and parameters C0, Ω0, n, N , nr, nz

was examined. The obtained results fulfilled our expectancy.

Example 3. The steady state flow velocities w0r, w0ϕ, and w0z were computed by
the CFD package FLUENT with the data R1 = 0.015, R2 = 0.15, L = 1, % = 103

and with the boundary conditions

on the inlet z = 0 : w0r = 0, w0ϕ = r(7.5e−r/0.05 − 5), w0z = 1,

on the outlet z = L : p0 = poutlet,

on the interface r = R1 : p0 = pinterface,

on the wall r = R2 : w0r = 0.

Here, poutlet and pinterface are the constant pressure invoking cavitating vortex rope
and the saturated vapour pressure, respectively. The surface tension influences were
not taken into account. The stability examination was performed for the following
parameter values: Ω0 = 5, nr = 4, nz = 1, N = 8, and n = 0, 1, 2. The stability of
the flow, resulting from the transient FLUENT modeling, was confirmed: all finite
eigenvalues had negative real parts.
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ADAPTIVE FRAME METHODS WITH CUBIC
SPLINE-WAVELET BASES∗

Dana Černá, Václav Finěk

In recent years, adaptive wavelet methods have been successfully used for solving
operator equations [2, 3, 5]. It has been shown that these methods converge and that
they are asymptotically optimal in the sense that storage and number of floating point
operations, needed to resolve the problem with desired accuracy, remain proportional
to the problem size when the resolution of the discretization is refined.

Suitable wavelet bases on bounded domains are needed for these methods. They
are usually constructed in the following way: Wavelets on the real line are adapted
to the interval and then by tensor product technique to the n-dimensional cube.
Finally, by splitting the domain into nonoverlapping subdomains which are images
of (0, 1)n under appropriate parametric mappings, one can obtain wavelet bases on
a fairly general domain. However, it can be very difficult to find these parametric
mappings. For this reason, more general adaptive wavelet-frame methods were
proposed in [7, 10]. These methods use frames instead of wavelet bases. A frame on
a bounded domain can be obtained by a union of wavelet bases on the overlapping
subdomains, which are lifted tensor products of a basis on the unit interval. Thus,
the construction of wavelet frames is much simpler than the construction of wavelet
bases.

The effectiveness of adaptive wavelet and frame methods is strongly influenced
by the choice of the wavelet basis on the interval, in particular by its conditioning.
However, the conditioning of the known spline-wavelet bases [8, 9] becomes bad for
primal polynomial exactness of order N > 3, which causes problems in practical
applications. In our contribution, we focus on the cubic case, i.e. N = 4, and
we propose a construction of cubic spline-wavelet bases on the interval adapted for
complementary boundary conditions of the first order. We show that these bases are
well-conditioned and that the corresponding stiffness matrices have small condition
numbers. Furthermore, we show that the adaptive wavelet frame method from [7]
with bases constructed in our paper realizes the optimal convergence rate.

1. Construction of boundary adapted spline-wavelet bases

In this section, we introduce a construction of stable spline-wavelet bases on
the interval satisfying complementary boundary conditions of the first order. It

∗The research of the first author has been supported by the MSMT project no. LC06024, while
the second author has been supported by the project IGS financed by Technical University in
Liberec.
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means that the primal wavelet basis is adapted for homogeneous Dirichlet boundary
conditions of the first order, while the dual wavelet basis preserves the full degree of
polynomial exactness. This construction is based on the spline-wavelet bases from [4].
Let Ñ be the order of polynomial exactness of the dual MRA.

Let Φold
j = {φj,k, k = −3, . . . , 2j − 1} be the primal scaling basis on level j from [4].

The functions φj,−3, φj,2j−1 are the only two functions which do not vanish at bound-
ary points. Therefore, defining

Φj :=
{
φj,k, k = −2, . . . , 2j − 2

}
(1)

we obtain primal scaling bases satisfying the first order Dirichlet boundary condi-
tions.

0 0.5 1
0

0.5

1

1.5

2

Fig. 1: Cubic primal scaling basis for Ñ = 6, j = 3 satisfying complementary boundary
conditions of the first order.

On the dual side, we also need to omit one scaling function at each boundary,
because the number of the primal scaling functions must be the same as the number
of the dual scaling functions. Let Θold

j =
{
θold

j,k , k = −3, . . . , 2j − 1
}

be the dual
scaling basis on level j before biorthogonalization from [4]. There are boundary
functions of two types. The functions θold

j,−3, . . ., θold
j,−4+Ñ

are left boundary functions

of the first type which are defined to preserve polynomial exactness of order Ñ . The
functions θold

j,−3+Ñ
, . . ., θold

j,Ñ−2
are left boundary functions of the second type. The

right boundary scaling functions are then derived by reflection of the left boundary
functions. Since we want to preserve the full degree of polynomial exactness, we omit
one function of the second type at each boundary. Thus, we define

θj,k = θold
j,k−1, k = −2, . . . ,−3 + Ñ ,

θj,k = θold
j,k , k = −2 + Ñ , . . . , 2j − Ñ − 2,

θj,k = θold
j,k+1, k = 2j − Ñ − 1, . . . , 2j − 2.

Since the set Θj := {θj,k : k = −2, . . . , 2j − 2} is not biorthogonal to Φj, we derive

a new set Φ̃j from Θj by biorthogonalization. Let Aj = (〈φj,k, θj,l〉)2j−2
k,l=−2, then

viewing Φ̃j and Θj as column vectors we define Φ̃j := A−T
j Θj, assuming that Aj is

invertible, which is the case of all choices of Ñ in our numerical experiments.
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Our next goal is to determine the corresponding sets of wavelets at the scale j, i.e.

Ψj := {ψj,k, k = 1, . . . 2j}, Ψ̃j :=
{

ψ̃j,k, k = 1, . . . 2j
}

. We follow a general principle

called stable completion as in [8] with some small changes. Since this construction
is quite subtle we do not go into details here.
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Fig. 2: Some cubic primal wavelets for Ñ = 6 satisfying the complementary boundary
conditions of the first order.

2. Quantitative properties of the constructed bases

In this section, quantitative properties of the constructed bases are presented. In
order to further improve the condition we provide L2-normalization of the primal
functions. Then we multiply the dual functions by appropriate constants to preserve
biorthogonality. The L2-normalized bases are denoted by the superscript N . The
conditioning of the resulting single-scale bases are listed in Table 1.

N Ñ j Φj ΦN
j Φ̃j Φ̃N

j Ψj ΨN
j Ψ̃j Ψ̃N

j

4 6 6 4.53 4.30 7.89 6.83 9.46 8.00 16.37 7.96
4 8 6 4.53 4.30 11.15 10.05 8.45 8.02 25.30 15.26
4 10 6 4.53 4.30 17.89 16.97 8.39 8.42 37.65 35.80

Tab. 1: The conditioning of single-scale scaling and wavelet bases.

The other criterion for the effectiveness of wavelet bases is the condition number
of the corresponding stiffness matrix. Here, let us consider the stiffness matrix for
the Poisson equation:

Aj0,s =
(〈

ψ′j,k, ψ
′
l,m

〉)
ψj,k,ψl,m∈Ψj0,s

, (2)
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where Ψj0,s = Φj0∪
⋃j0+s−1

j=j0
Ψj denotes the multiscale basis. It is well-known that the

condition number of Aj0,s increases quadratically with the matrix size. To remedy
this, we use a diagonal matrix for preconditioning

Aprec
j0,s = D−1

j0,sAj0,sD
−1
j0,s, Dj0,s = diag

(〈
ψ′j,k, ψ

′
j,k

〉1/2
)

ψj,k∈Ψj0,s

. (3)

To further improve the condition number of Aprec
j0,s we apply orthogonal transforma-

tion to the scaling basis on the coarsest level as in [1] and then we use diagonal matrix
for preconditioning. We denote the obtained matrix by Aort

j0,s. Condition numbers of
the resulting matrices are listed in Table 2.

N Ñ j s M Aprec
j,s Aort

j,s N Ñ j s M Aprec
j,s Aort

j,s

4 4 4 1 33 47.02 15.38 4 8 5 1 65 205.56 15.92
3 129 49.56 17.40 3 257 208.37 25.04
5 513 50.17 18.52 5 1025 209.12 27.47
7 2049 50.28 18.91 7 4097 209.31 27.69

4 6 4 1 33 48.98 15.25 4 10 5 1 65 224.22 22.51
3 129 49.56 15.94 3 257 226.17 81.72
5 513 50.17 16.24 5 1025 226.42 91.26
7 2049 50.28 16.31 7 4097 226.63 92.17

Tab. 2: The condition numbers of stiffness matrices Aprec
j,s , Aort

j,s of the size M ×M .

3. Adaptive frame method with the constructed bases

Adaptive frame methods are designed in particular for solving operator equations
on complicated domains. However, even in some one-dimensional numerical examples
the optimal convergence rate was not realized, probably due to stability problems
of the used bases. Our intention is to show that the optimal convergence rates of
adaptive wavelet frame methods can be achieved also for the case of cubic spline
wavelets. We should emphasize that we consider the one-dimensional example as
a milestone on the way to higher-dimensional problems.

We consider the same test example as in [6], i.e. the Poisson equation

−u′′ = f in Ω = (0, 1) , u (0) = u (1) = 0, (4)

with the functional f defined by

f (v) = 4v

(
1

2

)
−

∫ 1

0

(
9π2 sin (3πx) + 4

)
v (x) dx. (5)

Then the solution u is given by

u (x) =

{
− sin (3πx) + 2x2, x ∈ [0, 0.5) ,

− sin (3πx) + 2 (1− x)2 , x ∈ [0.5, 1] .
(6)
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To test our bases, we construct a wavelet frame on Ω simply as the union of
interval wavelet bases on Ω1 = (0, 0.7) and Ω2 = (0.3, 1) . Note that the singularity
is contained in the overlapping part and thus the boundary scaling functions and
wavelets, which may potentially cause instabilities, are more involved in the frame
than in the wavelet approach. This is the reason why we use wavelet frames instead
of wavelet bases directly.

Let us define

A = D−1 〈Ψ′, Ψ′〉D−1, f = D−1 〈f, Ψ〉 , D = diag
(〈

ψ′j,k, ψ
′
j,k

〉1/2
)

ψj,k∈Ψ
. (7)

Then the variational formulation of (4) is equivalent to

AU = f , (8)

and the solution u is given by u = UD−1Ψ. We solve the infinite dimensional
problem (8) by the inexact damped Richardson iterations, for details we refer to [7].

Since the solution u has limited Sobolev regularity, u ∈ Hs (Ω)∩H1
0 (Ω) only for

s < 1.5, the linear methods can only converge with limited order. Let Bs
q (Lp (Ω))

denote a Besov space of smoothness s over Lp (Ω) with additional index q. It can be
shown that u ∈ Bs+1

τ (Lτ (Ω)) for any positive s and τ = (s + 0.5)−1. Therefore,

‖U−Uk‖l2 ≤ C (# supp Uk)
−n , (9)

where Uk is the k-th approximate iterand. The theoretical rate of convergence n
is limited only by the polynomial exactness of the underlying wavelet bases, in our
case the relation (9) holds for any n < 3. Figure 3 shows the logarithmic plot of the
realized convergence rate for the bases designed in this contribution with Ñ = 4 and
Ñ = 6.
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Fig. 3: The l2 norm of the residual rk = f−AUk versus the number of degrees of freedom.

To conclude: We proposed a construction of cubic spline-wavelet bases on the in-
terval adapted for complementary boundary conditions of the first order. As opposed
to bases from [8, 9], bases constructed in our paper are well-conditioned, the corre-
sponding stiffness matrices have small condition numbers and the adaptive wavelet
frame method from [7] with our bases realizes the optimal convergence rate.
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AN APPLICATION OF THE AVERAGED GRADIENT TECHNIQUE∗

Jan Chleboun

Dedicated to Ivan Hlaváček on the occasion of his 75th birthday.

1. Introduction

Gradient averaging (also known as gradient recovery (GR)) is a technique for
improving the accuracy of an approximate gradient obtained via a numerical method.
Sensitivity analysis deals with analyzing the response of a function (or a functional)
to a small perturbation of its input values. In this contribution, we limit ourselves
to gradients originating from finite element solutions of boundary value problems
(BVPs) and to criterion-functionals that evaluate these solutions. Our goal is to
show that the use of a gradient recovery technique in sensitivity analysis formulae
can result in a better assessment of the quality of approximate minimizers of criterion-
functionals that appear in parameter identification problems or the worst scenario
method, for example.

Let us finish this short introductory part with a few words to honor Ivan Hlaváček
from the Institute of Mathematics of the Academy of Sciences of the Czech Repub-
lic who recently celebrated his 75th birthday. He has pioneered a mathematically
rigorous analysis of the worst scenario problems since the mid-nineties and also con-
tributed to the family of gradient averaging techniques. The following pages thus
pay tribute to his scientific achievements.

2. Averaged gradient

The idea to improve the accuracy of an approximate gradient calculated by the
finite element method is more than two decades old and has materialized in numerous
applications. Take, for example, Zienkiewicz-Zhu error estimators stemming from [8].
The contribution of Czech mathematicians is not negligible, see [2, 3, 4, 5, 6], for
instance.

Although various recovery techniques have been designed, let us confine ourselves
to a simple averaging method proposed and analyzed in [3].

Let Ω ⊂ R2 be a bounded domain with a polyhedral Lipschitz boundary. Let
F = {Th}h→0 be a family of triangulations of Ω, where h is the maximum diameter

∗This research was supported by the Ministry of Education, Youth, and Sports of the Czech Re-
public through contract MSM 6840770003. The author’s participation in the PANM 14 Conference
was made possible through grant No. IAA100190803 from the Grant Agency of AS CR.

65



Z

A
2

A
1

B
2

B
1

Z

A
2

A
1

B
2

B
1

Fig. 1: Auxiliary points: for an inner node (left), for a boundary node (right).

of all elements K ∈ Th. Let Vh = {vh ∈ C(Ω) : vh|K ∈ P1(K) ∀K ∈ Th}, where
P1(K) stands for the space of linear polynomials on K.

For a mesh node Z, we draw two lines parallel to the axes (see Figure 1), find
their intersections with the edges of those triangles that share the vertex Z, and
label these intersection points A1, A2, B1, and B2 as in Figure 1. We then set

ai = (Ai − Z)i, bi = (Bi − Z)i, i = 1, 2.

For vh ∈ Vh, the components of the weighted averaged gradient Ghvh ∈ Vh at Z
are defined as follows

(Ghvh(Z))i = αivh(Ai)− (αi + βi)vh(Z) + βivh(Bi), (1)

where i = 1, 2 and αi = bi/(ai(bi − ai)), βi = ai/(bi(ai − bi)).
If v ∈ C(Ω), then (1) can also be applied (with vh replaced by v) to define

Ghv ∈ Vh, a continuous piece-wise linear approximation of ∇v.
We refer to [3] for details and a generalization to R3 as well as for situations that

are not covered by Figure 1.
The features of F are substantial for the order of accuracy of Ghv. Let us recall

that F is called a strongly regular family of triangulations if

∃κ > 0 ∀Th ∈ F ∀K ∈ Th κh ≤ %K ,

where %K is the radius of the largest ball inscribed in K.
It is known, see [3, Theorem 3.8], that if q ∈ (1,∞) and F is strongly regular,

then a constant C > 0 exists such that for any v belonging to the Sobolev space
W 3

q (Ω), the following estimate holds (note the order h2)

‖∇v −Ghv‖0,q,Ω ≤ Ch2|v|3,q,Ω ∀Th ∈ F . (2)

Let us focus on the recovered gradient of a finite element (FE) solution.
We consider u ∈ V0 = H1

0 (Ω) (W 1
2 (Ω)-functions with zero trace), a unique weak

solution to the following V0-elliptic BVP

− div(λ̃∇u) = f in Ω, (3)

u = 0 on ∂Ω, (4)
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where λ̃ ∈ W 2
2+ε(Ω) for some ε > 0 and f ∈ W 1

q (Ω). Let us remark that λ̃ can be a
symmetric matrix of functions, see [3]. It is assumed that u ∈ W 3

q (Ω), where q > 2.
Next, uh ∈ V 0

h = V0 ∩ Vh, the piece-wise linear FE approximation of u, is defined
through ∫

Ω

λ̃(x)∇uh(x) · ∇vh(x) dx =

∫

Ω

f(x)vh(x) dx ∀vh ∈ V 0
h . (5)

To obtain a result similar to (2), we
have to resort to more stringent as-
sumptions about the meshes.
Let us consider F ′ ⊂ F , a special
class of smoothly distorted uniform
meshes, see [7, 3] for details and
Figure 2 for an illustration of such
a mesh.
For these meshes and for a fixed
subdomain Ω0 ⊂⊂ Ω, an analogue
to (2) holds, see [3, page 22], Fig. 2: Distorted uniform mesh.

‖∇u−Ghuh‖0,2,Ω0 ≤ C(u)h2. (6)

3. A parameter identification application

In this section, we will introduce a parameter identification problem.
For simplicity, let λ̃ be controlled by six parameters forming a vector λ, that is,

λ = (λ1, . . . , λ6) and

λ̃(x) = λ1 + λ2x1 + λ3x2 + λ4x
2
1 + λ5x1x2 + λ6x

2
2, x = (x1, x2) ∈ Ω.

We define the criterion-functional (and its approximation) that appears in para-
meter identification problems:

Ψ(λ) =

∫

Ω

|∇u(λ)−∇w|2 dx and Ψh(λ) =

∫

Ω

|∇uh(λ)−∇w|2 dx,

where Ψ evaluates u(λ), the λ-dependent weak solution to (3)–(4), and Ψh evaluates
uh(λ) determined by (5). In both cases, w is a given function.

Let λ ∈ Uad ⊂ R6, where Uad is a set of admissible parameters. The specification of
Uad is not necessary for the purposes of this paper; roughly speaking, Uad is a compact
subset of R6 such that the BVP is uniformly V0-elliptic with respect to λ ∈ Uad.

We formulate a parameter identification problem and its approximation: Find
λ0 ∈ Uad and λh

0 ∈ Uad such that λ0 = arg min
λ∈Uad

Ψ(λ) and λh
0 = arg min

λ∈Uad

Ψh(λ).
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An elementary sensitivity analysis (see [1]) results in

∂Ψh

∂λi

(λ) = −
∫

Ω

∂λ̃

∂λi

∇uh · ∇zh dx, i = 1, 2, . . . , 6, (7)

where zh ∈ V 0
h is the solution to the adjoint equation

∫

Ω

λ̃∇zh · ∇vh dx =

∫

Ω

2(∇uh −∇w) · ∇vh dx ∀vh ∈ V 0
h (Ω). (8)

Computational experiments show that a gradient minimization procedure based
on the derivative (7) is quite efficient in the search for λh

0 . Nevertheless, the degree
of accuracy of λh

0 and Ψh(λ
h
0) remains unknown.

To obtain at least an indicator of the (in)accuracy of the minimization results,
we will apply the above-mentioned gradient recovery technique.

Let us define both a new functional

ΨG
h (λ) =

∫

Ω

|Ghuh(λ)−∇w|2 dx, (9)

where uh = uh(λ) solves (5), and a new equation determining zG
h ∈ V 0

h through
∫

Ω

λ̃∇zG
h · ∇vh dx =

∫

Ω

2(Ghuh −∇w) · ∇vh dx ∀vh ∈ V 0
h . (10)

Strictly speaking, (10) is not the exact adjoint equation to (9) and (5) because the
right-hand side of (10) is not the exact derivative of ΨG

h with respect to uh; see [1] for
the derivation of adjoint equations. As a consequence, zG

h does not yield the exact
derivative of ΨG

h . However, the approximation, i.e.,

∂ΨG
h

∂λi

(λ) ≈ −
∫

Ω

∂λ̃

∂λi

∇uh(λ) · ∇zG
h (λ) dx, i = 1, 2, . . . , 6,

is sufficiently accurate to be used in solving the following minimization problem:
Find

λh,G
0 = arg min

λ∈Uad

ΨG
h (λ). (11)

We end up with two approximate minimum points, that is, λh
0 and λh,G

0 , with two
respective approximate state solutions uh(λ

h
0) and uh(λ

h,G
0 ), and three approximate

criterion-functional values, namely Ψh(λ
h
0), ΨG

h (λh
0), and ΨG

h (λh,G
0 ); the fourth value,

Ψh(λ
h,G
0 ), is not relevant for our purposes.

The distances

σλ =
∣∣∣λh

0 − λh,G
0

∣∣∣ , σΨ =
∣∣∣Ψh(λ

h
0)−ΨG

h (λh,G
0 )

∣∣∣ , and σG
Ψ =

∣∣∣ΨG
h (λh

0)−ΨG
h (λh,G

0 )
∣∣∣

can indicate an inaccuracy in the approximation of the exact solution pair λ0 and
Ψ(λ0). For h → 0+, it should be σλ, σΨ, σG

Ψ → 0.
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Let us remark that there is no guarantee that λh,G
0 approximates λ0 better than

λh
0 does.

Example
The problem is defined by Ω = (−3, 3) × (−3, 3), w = exp(−x2

1 − x2
2), and Ψ(λ) =

1000‖∇(u − w)‖2
0,2,Ω. The right-hand side function f , see (3), is determined by w

and a predefined polynomial λ̂. Although w does not comply with the homogeneous
boundary condition, the difference is rather small and, for λ̂, the state solution u is
close to w. A distorted mesh is formed by 800 triangles (h = 0.3).

The minimization process starts at λs = (2, 2, 2, 2, 2, 2); we obtain Ψh(λs) = 1641
(GR not used) and ΨG

h (λs) = 1693 (GR is used).
The calculated results are as follows

Ψh(λ
h
0) = 93.9 GR is not used in the minimization,

ΨG
h (λh

0) = 26.5 GR is applied just to uh(λ
h
0),

ΨG
h (λh,G

0 ) = 3.9 GR is used in the minimization,

σλ = 0.21, σΨ = 90.0, σG
Ψ = 22.6.

The minimum value Ψh(λ
h
0) = 93.9 is the result of the minimization procedure

where ∇uh(λ) is piece-wise constant. There is no indication whether or not Ψh(λ
h
0)

is close to Ψ(λ0). If the averaged gradient of uh(λ
h
0) is evaluated by the criterion-

functional, we obtain ΨG
h (λh

0) = 26.5, which shows that Ghuh is a better approxima-
tion of ∇w. This can be anticipated because ∇w is most significant in a subdomain
Ω0 ⊂⊂ Ω and (6) holds. The minimization based on (9) leads to even lower min-
imum ΨG

h (λh,G
0 ) = 3.9, which says that the averaged gradient of the state solution

uh(λ
h,G
0 ) is so far the best approximation to ∇w. Nevertheless, ∇uh(λ

h,G
0 ) (piece-

wise constant) does not outweigh ∇uh(λ
h
0) because the latter results in the criterion

minimum value without GR. As indicated by σλ = 0.21, the difference between λh
0

and λh,G
0 is rather significant.

We can draw a few conclusions: (a) for the given h, Ψh(λ
h
0) is not a good ap-

proximation of Ψ(λ0) (note that Ψh(λs) seems to be a sufficient approximation of
Ψ(λs) because GR leads to a change of only 3%); (b) we can expect that Ψ(λ0) is
“close” to zero; (c) the values Ψh(λ

h
0), ΨG

h (λh
0), and ΨG

h (λh,G
0 ) are significantly differ-

ent; this means that both a refinement of the mesh as well as further minimization
in the neighborhood of λh

0 or λh,G
0 are necessary to gain confidence in the calculated

minimum.

Acknowledgement: The author is indebted to Dr. Richard (Dick) Haas for many
fruitful discussions.
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INFLUENCE OF LINEARIZATION TO THE SOLUTION
OF FISHER’S EQUATION IN A PLANE

Pavol Chocholatý

Abstract

Reaction-diffusion equations arise as mathematical models in a series of important
applications. Some difference schemes to the solution of the Fisher’s equation are
presented.

1. Fisher’s equation

We start our discussion of reaction-diffusion equations by considering a model
arising in mathematical ecology. In order to understand the foundation of this model,
we first recapture the model of population growth. This model states that the
growth of a population facing limited resources is governed by an ordinary differential
equation (ODE)

u′(t) = cu(t)(A− u(t))

for the population density. It is assumed that spatial variation in the density of
the population is of little importance for the growth of the population. Thus, one
simply assumes that the population is evenly distributed over some area G ⊂ Rd for
all time t, c > 0 is the growth rate, and A > 0 is the so-called carrying capacity of
the environment. For real populations, this assumption is often quite dubious. In
the next level of sophistication, it is common to take into account the tendency of
a population to spread out over the area G where it is possible to live. This effect is
incorporated by adding a Fickian diffusion term to the model.

Now, let u(x, t) be a function of the population density in time t and a point x of
an area G ⊂ Rd with the boundary S . Then we get the following partial differential
equation

ut = ∇(D∇u) + q. (1)

Here, D is a diffusion coefficient. Equation (1) is a linear diffusion equation or
the heat equation with nonhomogeneous forcing term, where q is assumed to be
a continuous function in x and t. Assume now that the function q depends also on
the population density u, i.e. q = f(x, t, u), then equation (1) in the form

ut −∇(D∇u) = f(x, t, u) (2)

is a nonlinear reaction-diffusion equation.
Consider next a situation

f(x, t, u) = cu(A− u). (3)
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In mathematical ecology, model of population growth

ut = ∇(D∇u) + cu(A− u) (4)

is called Fisher’s equation. We mentioned that the first right-hand side term models
the diffusion of the population. Similar terms arise in a lot of applications, where we
want to capture the tendency of nature to smooth things out. For instance, if you
drop a tiny amount of ink into a glass of water, you can watch how the ink spreads
throughout the water by means of molecular diffusion. This situation is modeled by
the diffusion equation, where Fick’s law is used to state that there is a flux of ink from
areas of high concentration to areas of low concentration. Similarly again, a Fickian
diffusion term in a model of population density states that there is a migration from
areas of high population density to areas of low population density. Human beings
do not always obey this sound principle.

Fisher’s equation (4) is usually studied in conjunction with Neumann-type bound-
ary condition, i.e.

(∇u)T · ν = 0 on S × [0, T ], (5)

where ν is meant to be the out-side normal to S.

The reason for this boundary condition is that we assume the area G to be closed,
so there is no migration from the domain. Assume that g = g(x), 0 ≤ g(x) ≤ A
denotes the initial distribution of the population, we have the initial condition

u(x, 0) = g(x), x ∈ G. (6)

Now, (4), (5), (6) represent the initial-boundary value problem for Fisher’s equation.

Since we are interested in the qualitative behaviour of this model rather than the
actual quantities, we simplify the situation by putting D = c = A = 1 and study the
following problem

ut = ∆u + u(1− u),
∂u

∂ν

∣∣∣
S

= 0, t ∈ [0, T ], u(x, 0) = g(x), x ∈ G. (7)

2. Finite difference schemes for Fisher’s equation

First, we want to solve the initial-boundary value problem (7) and Cauchy prob-
lem by difference approximation. Let us start with Cauchy problem: We introduce
a time-step l = T/m, ti = il, i = 0, 1, . . . ,m and denote by P (x, t, u) the right-
hand side of differential equation in (7). The u.,i are meant to be approximations to
u(x, ti), then an explicit finite difference scheme can be written as follows:

u.,i+1 = u.,i + lP (x., ti, u.,i), u.,0 = g(x.), (8)

which represents explicit Euler method for Cauchy problem by ODEs.

72



In order to define further integration procedures, we have to give a rule for de-
termining u.,i+1 when u.,i, u.,i−1 and the differential equation are given. Such rule is
based on Taylor’s expansion and constitutes an explicit two-step formula for u.,i+1:

u.,i+1 =
7

4
u.,i − 3

4
u.,i−1 +

l

4
P (x., ti, u.,i), (9)

u.,i+1 =
4

3
u.,i − 1

3
u.,i−1 +

2l

3
P (x., ti, u.,i), (10)

u.,i+1 = u.,i−1 + 2lP (x., ti, u.,i). (11)

We are now going to write down the approximation for the initial-boundary value
problem:

A. For d = 1 the problem (7) can be written under the form

ut = uxx + u(1− u), x ∈ (0, L), t ∈ (0, T ),

ux(0, t) = ux(L, t) = 0, t ∈ [0, T ], (12)

u(x, 0) = g(x), x ∈ [0, L],

and a mesh width h = L/n, xj = jh, j = 0, 1, 2, . . . , n, n natural number, and divide
the interval [0, L] into subintervals of length h. For simplicity, put L = 1 and we
have on [0, 1] (n − 1) inner grids x1, x2, . . . , xn−1, and two boundary grids x0 = 0,
xn = 0. As usual, we assume that the solution u of (12) can be continued on the left
side of boundary grid x0 and on the right side of xn, we use the approximation by
symmetric differences to describe Neumann boundary conditions.

So, P (x, ti, uj) can be written by using symmetric differences under the form

h2P (xj, ti, uj,i) = uj+1,i + (h2 − 2)uj,i + uj−1,i − h2u2
j,i, j = 0, 1, . . . , n. (13)

Denoting by ui a vector function which is defined for all ti = il, i = 0, 1, 2, . . . , m,
we approximate the Cauchy problem (8) by

uj,i+1 = ruj+1,i + (1 + rh2 − 2r)uj,i + ruj−1,i − rh2u2
j,i,

uj,0 = g(xj), u−1,i = u1,i, un−1,i = un+1,i, (14)

where, as usual, r = l/h2. Tveito and Winther [2] have presented the stability
condition

l <
h2

2 + h2
, (15)

this property provided that the mesh parameters satisfy the requirement, which is
slightly more restrictive than the corresponding condition for the heat equation,
l ≤ h2/2 or r ≤ 1/2. In a paper [1] we have utilized the preceding result to construct
a new stability condition

l <
h2

2 + h2/2
. (16)
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In order to verify this stability condition we have solved problem (12), g(x) =
cos2 πx for some given h and computed l such that

(C1) l <
h2

2 + h2
,

(C2)
h2

2 + h2
≤ l <

h2

2 + h2/2
,

(C3) l ≥ h2

2 + h2/2
.

In numerical experiments we have observed that the approximate solutions in
cases (C1), (C2) always stayed within the unit interval and that they approached
the state u = 1 as time increased, but in case (C3) the oscillatory solution about the
state u = 1 as time increased was obtained.

Now, we approximate the Cauchy problem by explicit two-step formu-
las (9), (10), (11) with the operator (13)

4uj,i+1 = ruj−1,i + (7− 2r + rh2)uj,i + ruj+1,i − 3uj,i−1 − rh2u2
j,i, (17)

3uj,i+1 = 2ruj−1,i + (4− 4r + 2rh2)uj,i + 2ruj+1,i − uj,i−1 − 2rh2u2
j,i, (18)

uj,i+1 = 2ruj−1,i + (2rh2 − 4r)uj,i + 2ruj+1,i + uj,i−1 − 2rh2u2
j,i, (19)

l = rh2, i = 0, 1, 2, . . . , m, j = 0, 1, 2, . . . , n,

and described conditions

uj,0 = g(xj), u−1,i = u1,i, un−1,i = un+1,i.

We now consider the question of an actual error at the discrete time points ti = il,
i = 0, 1, 2, . . . ,m. The “good” dependence of actual error on (i + p)-th step to an
error on i-th step is a motivation for the computational method used.

The following three tables present for l = 0.0049875 and h = 0.1 the propagation
of the unit error at one vertex on time steps i + p for (17), (18), (19). Notice that
if the error is not unite, then the presented values should be scaled by its actual size ε.

(17) x0 x1 x2 x3 x4 x5 x6

i 0 0 0 1 0 0 0
i+1 0 0 0.125 1.5 0.125 0 0
i+2 0 0.016 0.374 1.532 0.374 0.016 0
i+3 0.002 0.070 0.662 1.266 0.662 0.070 0.002

(18) x0 x1 x2 x3 x4 x5 x6

i 0 0 0 1 0 0 0
i+1 0 0 0.333 0.668 0.333 0 0
i+2 0 0.111 0.445 0.335 0.445 0.111 0
i+3 0.037 0.222 0.337 0.299 0.337 0.222 0.037
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(19) x0 x1 x2 x3 x4 x5 x6

i 0 0 0 1 0 0 0
i+1 0 0 0.998 -1.95 0.998 0 0
i+2 0 0.995 -3.98 6.911 -3.98 0.995 0
i+3 0.993 -5.95 16.62 -24.1 16.62 -5.95 0.993

So, it is shown that with formulas (17), (18) a good approximative solution
for (12) can be computed and that the formula (19) leads to catastrophical spread-
ing of actual error.

B. The computational technique outlined in the previous part can be applied formally
to the problem (7) also in case d = 2 with domain G = (0, 1) × (0, 1), G = G + S.
In this chapter, we concentrate on the solution of Cauchy problem using implicit
methods

u.,i+1 = u.,i + lP (x., ti+1, u.,i+1), u.,0 = g(x.).

For a grid function to u(x, y, t), defined on the set of grid points Gh = {(xj, yk); h =
1/n; 0 ≤ j, k ≤ n} at a given time ti = il ∈ [0, T ], i = 0, 1, 2, . . . , m, l = T/m, we
frequently write uj,k,i. For such functions the finite difference operator approximating
the differential operator P (x, t, u) is now defined by

h2P (xj, yk, ti, uj,k,i) = uj+1,k,i+uj−1,k,i+uj,k−1,i+uj,k+1,i+(h2−4)uj,k,i+h2u2
j,k,i (20)

for all interior grid points (xj, yk, ti), j, k = 1, 2, . . . , n− 1. For a Neumann condition
defined on S, we frequently use forwards and backwards differences

u1,k,i = u0,k,i, uj,1,i = uj,0,i, un,k,i = un−1,k,i, uj,n−1,i = uj,n,i, j, k = 0, 1, . . . , n.
(21)

A finite difference approximation is now started by Cauchy condition

uj,k,0 = g(xj, yk) (22)

and is represented on each ti, i = 1, 2, . . . , m by a system of nonlinear equations.
But our computational approach is based on a sequential solution procedure, where
the operator splitting is the key to obtain higher efficiency. This is the case for the
alternating direction implicit (ADI) scheme first proposed for the implicit solution
of heat flow in two geometric dimensions by Peaceman and Rachford. They have
proved both stability and convergence for the method. The computational setup can
be briefly described using linearization as follows: Consider the first finite-difference
scheme in the linearization form

uj,k,z − uj,k,i = r(uj−1,k,z − 2uj,k,z + uj+1,k,z) + r(uj,k−1,i − 2uj,k,i + uj,k+1,i) +

+rh2uj,k,z(1− uj,k,i) (23)
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and now formulate two approaches of linearization of the second finite-difference
scheme

uj,k,i+1 − uj,k,z = r(uj,k−1,i+1 − 2uj,k,i+1 + uj,k+1,i+1) + r(uj−1,k,z − 2uj,k,z + uj+1,k,z)

+ rh2uj,k,z(1− uj,k,i+1), (24)

uj,k,i+1 − uj,k,z = r(uj,k−1,i+1 − 2uj,k,i+1 + uj,k+1,i+1) + r(uj−1,k,z − 2uj,k,z + uj+1,k,z)

+ rh2uj,k,i+1(1− uj,k,z) (25)

with both Cauchy condition (22) and boundary condition (21), where r = l/(2h2)
and z = i + 1/2, i = 0, 1, . . . , m− 1.

A computational comparison of the above-mentioned approaches (23), (24)
or (23), (25) for Fisher’s equation with Cauchy condition g(x, y) = cos2(π(x + y))/2
and steps h = 0.1, l = 0.01 introduces on some ti = il at the point (0.7, 0.5) ∈ G the
following table:

t 0.01 0.1 1
(23),(24) 0.161929944 0.289809450 0.712927005
(23),(25) 0.162252848 0.290045491 0.714969435
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RESONANCE BEHAVIOUR OF THE SPHERICAL
PENDULUM DAMPER∗

Cyril Fischer, Jǐŕı Náprstek

Abstract

The pendulum damper modelled as a two degree of freedom strongly non-linear
auto-parametric system is investigated using two approximate differential systems.
Uni-directional harmonic external excitation at the suspension point is considered.
Semi-trivial solutions and their stability are analyzed. The thorough analysis of the
non-linear system using less simplification than it is used in the paper [2] is performed.
Both approaches are compared and conclusions are drawn.

1. Introduction

Many structures encountered in the civil and me-
chanical engineering are equipped with various devices
for reducing dynamic response component due to ex-
ternal excitations. Among other low cost passive sys-
tems the pendulum dampers are still very popular for
their reliability and simple maintenance, see e.g. [1].
However the dynamic behaviour of such a pendulum
is significantly more complex than it is supposed by
a widely used simple linear SDOF model working in
the (xz) vertical plane only, see Figure 1. The conven-
tional linear model is satisfactory only if the kinematic
excitation a(t) introduced at the suspension point is
very small in amplitude and if its frequency remains
outside a resonance frequency domain.

2. Mechanical energy balance

Fig. 1: Sketch of the pendu-
lum and coordinate systems
used.

Let us consider the kinematic excitation a(t) at the suspension point in the x di-
rection only. The natural choice of the coordinate system suitable for description
of the movement of the pendulum would be the spherical coordinate system de-
scribed by the angles θ (in the xz plane), ϕ (diversion from the xz plane) and radius
r = const (see Fig. 1). However, such a choice does not allow to consider the angle
ϕ as a perturbation of the pure planar motion described by θ, r only. Indeed, even
for a small transversal motion (in the y direction), the full range ϕ ∈ 〈0, 2π) occurs.
Thus the mechanical energy balance has to be written in the Cartesian coordinates

∗The support of the Grant Agency of the ASCR Nos. A2071401, IAA200710805 and
AVOZ 20710524 research plan are acknowledged.
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(ξ(t) = ξ, ζ(t) = ζ, η(t) = η). The kinetic and potential energies T, V are described
by: T = m(ξ̇2 + ζ̇2 + η̇2 + 2ȧξ̇ + ȧ2)/2, (1)

V = mgη (2)

and the geometric constraint of the suspension is expressed as:

ξ2 + ζ2 + (1− η)2 = r2, (3)

where m, r - mass and suspension length of the pendulum
a = a(t) - kinematic excitation at the suspension point

From the relation between the spherical and Cartesian coordinates and the geometric
constraint (3) it follows:

η = r(1− cos θ) ; η̇2 = r2θ̇2 sin2 θ ; sin θ =
%

r
, where %2 = ξ2 + ζ2. (4)

A hypothesis that the amplitude of θ(t) is small makes acceptable an approximation:

θ = arcsin
%

r
≈ %

r
+

1

6

%3

r3
⇒ θ̇2 =

%̇2

r2

(
1 +

%2

2r2

)2

. (5)

The equations of the motion follows from the Lagrangian principle:

∂t(∂χ̇T )− ∂χT + ∂χV = 0 , for χ ∈ {ξ, ϕ}. (6)

Using (1), (2), (4), (5) and (6) an approximate Lagrangian system in the x, y coordi-
nates for the components ξ, ζ on the level O(ε6); ε2 = (ξ2 + ζ2)/r2 can be obtained.
The approximate linear damping with the relative scale ωb equivalent in both com-
ponents ξ, ζ will be included, giving the differential system:

ξ̈ + 2ωbξ̇ + ξ

(
1 +

ξ2 + ζ2

2r2

) 
ω2

0 +
((ξ2 + ζ2)

q
)
2

4r4
+

(
1 + ξ2+ζ2

2r2

)
(ξ2 + ζ2)

q q

2r2


=−ä,

ζ̈ + 2ωbζ̇ + ζ

(
1 +

ξ2 + ζ2

2r2

) 
ω2

0 +
((ξ2 + ζ2)

q
)
2

4r4
+

(
1 + ξ2+ζ2

2r2

)
(ξ2 + ζ2)

q q

2r2


= 0,

(7)

where ω2
0 = g/r. Taking into account the additional simplification,

(
1 +

(ξ2 + ζ2)

2r2

)2

≈ 1,
χ

r4

(
1 +

(ξ2 + ζ2)

2r2

) (
(ξ2 + ζ2)

q )2 ≈ 0 for χ ∈ {ξ, ζ}, (8)

the simplified form of the differential system can be obtained (see [2]):

ξ̈ +
1

2r2
ξ(ξ2 + ζ2)

q q
+ 2ωbξ̇ + ω2

0(ξ +
1

2r2
ξ(ξ2 + ζ2)) = −ä,

ζ̈ +
1

2r2
ζ(ξ2 + ζ2)

q q
+ 2ωbζ̇ + ω2

0(ζ +
1

2r2
ζ(ξ2 + ζ2)) = 0.

(9)

In both simplified and complete systems, neglecting the non-linear terms will
result in two independent equations. Each of the components ξ, ζ can be considered
as arbitrarily small and independently and continuously limited to zero. Therefore
the system is auto-parametric and respective procedures can be applied [4].
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3. Semi-trivial solution

To investigate the semi-trivial solution let us substitute ζ = 0 into Eqs (7), (9)
and specify the excitation to be harmonic (see [3] for details): a(t) = a0 sin ωt.

The semi-trivial solution of Eqs (7) or (9) should be searched in the form:

ξ0 = ac cos ωt + as sin ωt ; ζ0 = 0. (10)

The coefficients ac, as in general should be considered as functions of time: ac =
ac(t), as = as(t). If a stationary solution exists for a given excitation frequency ω,
then ac, as should converge to constants for increasing t → ∞. In such a case the
coefficients ac, as can be considered constant. Let us substitute (10) into Eq. (7)
and (9), multiply them by sin(ωt) or cos(ωt) and integrate the resulting expressions
over the interval t ∈ (0, 2π/ω). The described operation (so called harmonic balance
operation) results for each of the equations (7) or (9) in an algebraic system consisting
of two equations. For the simplified case of Eq. (9) it is:

ac

(
(ω2

0 − ω2) +
1

2r2

(
3

4
ω2

0 − ω2
)

(a2
c + a2

s)
)

+ 2ωωb · as = 0,

as

(
(ω2

0 − ω2) +
1

2r2

(
3

4
ω2

0 − ω2
)

(a2
c + a2

s)
)
− 2ωωb · ac = a0 · ω2.

(11)

If both equations are raised to the second power and summed together, then, finally,
the equation for the amplitude of the response arises (R2

0 = a2
c + a2

s):

R2
0


4ω2ω2

b +

(
(ω2 − ω2

0) +
R2

0

2r2

(
ω2 − 3

4
ω2

0

))2

− 4ω4a2

0 = 0. (12)

Applying the same procedure to the original system (7), one can get a similar equa-
tion for the amplitude:

R2
0


4ω2ω2

b +

(
(ω2 − ω2

0) +
R2

0

2r2

(
ω2 − 3

4
ω2

0

)
+ ω2 R4

0

8r4

(
3 +

5R2
0

8r2

))2

− ω4a2

0 = 0.

(13)
The Eqs (12) and (13) are known as resonance curves. They express the depen-

dence of the amplitude R2
0 of the solution (response) on the excitation frequency.

Both curves are demonstrated in Figure 2. Depending on the parameters a0, ωb

and ω, this relations can lose their unique character in some intervals of ω.

4. Perturbation of the semi-trivial solution

To assess the stability of the semi-trivial solution we will endow the semi-trivial
solution (10) with small (in the meaning of a norm) perturbations u, v in both coor-
dinates:

ξ = ξ0 + u, u = u(t) = uc cos ωt + us sin ωt.
ζ = 0 + v, v = v(t) = vc cos ωt + vs sin ωt.

(14)
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Fig. 2: Resonance curves (thick lines a, a′) and stability limits (thin lines b, b′, c, c′) of the
semi-trivial solution computed using the original (solid lines a, b, c) and simplified (dashed
lines a′, b′, c′) equations.
Curves (b, b′): in (xz) plane – ξ stability limit, Eqs (16), (18).
Curves (c, c′): out of (xz) plane – ζ stability limit, Eqs (17), (19).
Interval i corresponds to the non-stability interval of the original formulas (16–17).
Interval i’ corresponds to the non-stability interval of the simplified formulas (18–19).
Values used: r = 1, g = 9.81, ωb = 0.075, a0 = 0.05.

As the perturbations are expected to be small, only the first powers of u, v and
their derivatives are kept after inserting expressions (14) into Eqs (7) and (9). After
the harmonic balance operation and some algebra one obtains two linear algebraic
systems for uc, us and vc, vs. For the simplified case (9) it reads:

(
w1 w2

w3 w1

) (
uc

us

)
= 0 ;

(
z1 z2

z3 z1

) (
vc

vs

)
= 0 ; (15)

where it has been denoted:

w1 =
[
2ωωb + 1

4r2 Ω1acas

]
; w2 =

[
2ωωb + 1

4r2 Ω1acas

]
; w3 =

[
1

4r2 Ω1acas − 2ωωb

]

z1 =
[
Ω2 + 1

8r2 (Ω1a
2
c + Ω3a

2
s)

]
; z2 =

[
1

4r2 Ω4acas + 2ωωb

]
; z3 =

[
1

4r2 Ω4acas − 2ωωb

]

Ω1 = 3ω2
0 − 4ω2; Ω2 = ω2

0 − ω2; Ω3 = ω2
0 + 4ω2; Ω4 = ω2

0 − 4ω2.

The both systems (15) are homogeneous and independent of excitation amplitude.
Consequently to receive a non-trivial solution for uc, us or vc, vs, the determinant of
the systems (15) must equal zero. This rationale leads to two independent equations:

1

2r2
Ω1R

2
0

(
Ω2 +

3

32r2
Ω1R

2
0

)
+ Ω2

2 + 4ω2ω2
b = 0, (16)

1

2r2
R2

0

(
ω0Ω2 +

1

32r2
Ω1Ω3R

2
0

)
+ Ω2

2 + 4ω2ω2
b = 0. (17)
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Similar equations can also be formulated for the original system (7)

175ω4R12
0

4096r12
+

45ω4R10
0

128r10
+

5ω2 (56ω2 − 15ω2
0) R8

0

256r8
+

ω2 (17ω2 − 14ω2
0) R6

0

8r6
+

+
3

(
−3ω2Ω2 + (1

4
Ω1)

2
)
R4

0

4r4
+

Ω2Ω1R
2
0

2r2
+ Ω2

2 + 4ω2ω2
b = 0,

(18)

− 5ω4R12
0

4096r12
− ω4R10

0

64r10
− ω2 (24ω2 + ω2

0) R8
0

256r8
− ω2 (3ω2 + ω2

0) R6
0

16r6
+

+
ω2

0 (3ω2
0 − 8ω2) R4

0

64r4
+

ω2
0Ω2R

2
0

2r2
+ Ω2

2 + 4ω2ω2
b = 0.

(19)

Eqs (16)–(17) and (18)–(19) can be interpreted as limits dividing the plane (R2
0, ω)

into the stable and unstable domains. For given parameters r, ωb, a0 the unstable
interval of excitation frequency is defined by the position of the intersections of the
resonance curve with the corresponding stability limits (points E, F in Figure 2).

5. Post-critical response in the resonance domain

Let us try to assume a more general expressions as the basic solution:

ξ(t) = ac(t) cos ωt + as(t) sin ωt ; ζ(t) = bc(t) cos ωt + bs(t) sin ωt. (20)

Increasing the number of unknown functions to four, one can exploit a possibility
to formulate two arbitrarily selectable additional conditions. Then the following
expressions for the first derivatives of the general solution (20) can be stated:

ξ̇(t) = −acω sin ωt + asω cos ωt ; ζ̇(t) = −bcω sin ωt + bsω cos ωt, (21)

where ac = ac(t), as = as(t), bc = bc(t), bs = bs(t). Let us insert expressions (20), (21)
in the simplified differential system (9) and apply the operation of the harmonic
balance once again. After dull routine work one obtain the differential system for
amplitudes ac, as, bc, bs, whose system matrix A depends only on ac, as, bc, bs, ω:

A




ȧc

ȧs

ḃc

ḃs



=−1

2




ac(8Ω2r
2 + R2

AΩ1) + 2bsS
2
AΩ4 + 4asωbωr2

as(8Ω2r
2 + R2

AΩ1) + 2bcS
2
AΩ4 + 4acωbωr2 +8ω2a0r

2

bc(8Ω2r
2 + R2

AΩ1) + 2asS
2
AΩ4 + 4bsωbωr2

bs(8Ω2r
2 + R2

AΩ1) + 2acS
2
AΩ4 + 4bcωbωr2


 , (22)

where it has been denoted

R2
A = a2

c + a2
s + b2

c + b2
s ; S2

A = asbc − acbs. (23)

The explicit solution of Eqs (22) is generally not possible in the resonance interval.
However, from the numerical analysis can be seen that at least part of the resonance
interval can be described by a steady state solution. The other part of the resonance
interval, where the transient solution takes place, will not be discussed here.
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The steady state response is characterized by constant amplitudes (for t → ∞).
This means that the time derivatives ȧc, ȧs, ḃc, ḃs vanish for large t. The left-hand
side of Eq. (22) vanishes and Eq. (22) reduces itself into the algebraic system. After
tedious work, the relation between R2

A, S2
A and ω can be deduced from Eq. (22),

where the left hand side was substituted by the zero vector:

R2
A

(
(8Ω2r

2 + R2
AΩ1)

2
+ 4 (4ω2ω2

br
4 + S4

AΩ2
4)

)
− 8S4

A (8Ω2r
2 + R2

AΩ1) Ω4 = 64r4a2
0ω

4,

S2
A

(
2R2

A (8Ω2r
2 + R2

AΩ1) Ω4 − (8Ω2r
2 + R2

AΩ1)
2 − 16ω2ω2

br
4 − 4S4

AΩ2
4

)
= 0.

(24)

Parameter R2
A can be interpreted as a generalized total or effective amplitude includ-

ing both components (20). As regards the S2
A, it represents a certain characteristics

of their phase shift. If S2
A = 0 the vectors [ac, as], [bc, bs] are co-linear. It represents

the motion in the vertical plane. Indeed, putting S2
A = 0 into the first equation

of (24) one obtains the formula for the semi-trivial resonance curve (12). The case
S2

A 6= 0 implies motion out of the vertical plane. For this case, an analysis of the
system (24) was carried out, but it is beyond the scope of this contribution.

Using the procedure described above, a similar relation was also derived for the
original system (7). The resulting formulas are rather complicated which fact makes
an analysis of the individual components hardly feasible. On the other hand, it
brings no new qualitative results comparing to the simplified version (24).

6. Conclusion

Analytical and numerical investigations have shown that the widely used linear
model of the damping pendulum is acceptable only in a very limited extent of para-
meters concerning pendulum characteristics and excitation properties. In the case of
a harmonic kinematic external excitation at the suspension point, it is necessary to
thoroughly investigate the dynamic stability limits and post-critical behaviour. To
investigate the stability of the semi-trivial solution, it is necessary to use the approx-
imate equations in the Cartesian coordinates. Using the harmonic balance method
the resonance curves of a planar stationary response as well as the stability lim-
its of the semi-trivial solution in both response components have been determined.
Omitting the simplification (8) results in very complicated formulas and brings only
quantitative specification.
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THREE-DIMENSIONAL NUMERICAL MODEL OF NEUTRON
FLUX IN HEX-Z GEOMETRY∗

Milan Hanuš, Tomáš Berka, Marek Brandner, Roman Kužel, Aleš Matas

Abstract

We present a method for solving the equations of neutron transport with dis-
cretized energetic dependence and angular dependence approximated by the diffusion
theory. We are interested in the stationary solution that characterizes neutron fluxes
within the nuclear reactor core in an equilibrium state. We work with the VVER-1000
type core with hexagonal fuel assembly lattice and use a nodal method for numerical
solution. The method effectively combines a whole-core coarse mesh calculation with
a more detailed computation of fluxes based on the transverse integrated diffusion
equations. By this approach, it achieves a good balance between accuracy and speed.

1. Multigroup diffusion theory

The set of steady-state neutron diffusion equations for G energy groups (the
discrete ranges of neutron energies) can be written as follows:

∇ · jg(r) + Σg
r(r)φ

g(r) =
G∑

g′=1
g′ 6=g

Σg′→g
s (r)φg′(r) +

χg

keff

G∑

g′=1

νΣg′
f (r)φg′(r). (1)

According to the usual notation,

r = (x, y, z) is the spatial variable,
g = 1, 2, . . . , G denotes the energy group,

φg is the neutron flux in group g (density of neutrons),
jg is the neutron current in group g (flow of neutrons in specific

direction),
Σg

r is the macroscopic removal cross section (characterizing
losses of neutrons in given region and from group g),

Σg′→g
s is the macroscopic cross section characterizing scattering of

neutrons from group g′ into group g,

χgνΣg′
f characterizes the average number of neutrons that appear

in group g due to fission induced by group g′ neutrons,
keff is the reactor critical number.

Each of the G equations in (1) describes local conservation of flux of neutrons having
energy within the respective group. We specifically consider a two group model in

∗Supported by project 1M0545 and Research Plan MSM 4977751301.
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which the energy threshold separating the groups is chosen such that χ1 = 1, χ2 = 0,
and Σ2→1

s ≡ 0 (for a physical explanation, see [3]).
Diffusion theory specifies the constitutive relation between neutron flux and neu-

tron current by the Fick’s law:

jg(r) = −Dg(r)∇φg(r), (2)

where Dg is the diffusion coefficient. Robin conditions apply on core boundary:

γgφg(r)− jg(r) · n = 0, γg =
1− αg

2(1 + αg)
, r ∈ ∂Ω, (3)

where n denotes the unit outward normal to the boundary ∂Ω at point r and physical
properties of core surroundings are captured by the albedo coefficient αg.

There is only one value of parameter keff for which the boundary value prob-
lem (1)–(3) admits a physically realistic solution ([4]). Physicists refer to this value
as to the reactor critical number since it shows the deviation of the steady state of
the core from its critical state (i.e. one in which there is a perfect balance between
production and losses of neutrons). Mathematically, it is the largest eigenvalue of the
problem and the corresponding eigenfunction, uniquely determined up to a multiple,
represents the physical flux solution.

2. Nodal method

A proven numerical method for solving problems arising from conservation laws
is the finite volume method (FVM). In order to obtain a computationally efficient
number of discrete equations, each finite volume (here called node) is identified with
a section of a real fuel assembly loaded into the core lattice. Extents of the node
equal to full assembly width and height hz such that Hz = Mhz, where Hz is the total
height of the core, and M a chosen number of its horizontal cuts. Nodal geometry
is displayed in Fig. 1 and has the following metric properties:

` =
h√
3
, F = `hz, B =

h2
√

3

2
, V = Bhz,

where B is the area of the nodal base, F the area of the other faces and V the nodal
volume. Denoting by N the number of assemblies and by Vi individual nodes, the
core domain is thus discretized as Ω =

⋃NM
i=1 Vi. To each node we further associate

a local coordinate system by unit vectors ex, eu, ev, ez as shown in Fig. 1. Finally,
we refer by symbols Vi+ξ and Vi−ξ to nodes adjacent to the reference node Vi to
the right and left, respectively, with respect to coordinate direction ξ ∈ {x, u, v, z}.
Their common face is denoted by Fi,ξ±, i.e. Fi,ξ± = Vi ∩ Vi±ξ.

The equation expressing the local balance of group g of neutrons in node Vi can
be formally obtained by integrating eq. (1) over Vi, dividing by its volume and using
the divergence theorem (for a rigorous derivation, see e.g. [3]):
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Coordinates of radial cross section Hex-Z prismatic node

Fig. 1: Geometry of node Vi.

F

V

∑

ξ∈{x,u,v}

(
¯̄g
i,ξ+− ¯̄g

i,ξ−
)
+

B

V

(
¯̄g
i,z+− ¯̄g

i,z−
)
+Σg

i,r
¯̄̄
φg

i =
2∑

g′=1
g′ 6=g

Σg′→g
i,s

¯̄̄
φg′

i +
χg

keff

2∑

g′=1

νΣg′
i,f

¯̄̄
φg′

i . (4)

The discrete unknowns in this equation are the node-averaged neutron fluxes :

¯̄̄
φg

i :=
1

V

∫∫∫

Vi

φg(r) dr ,

and the 6 face-averaged radial and 2 base-averaged axial neutron currents, respec-
tively:

¯̄g
i,ξ± :=

1

F

∫∫

Fi,ξ±
jg(r) ·eξ dF , for ξ ∈ {x, u, v}, and ¯̄g

i,z± :=
1

B

∫∫

Fi,z±
jg(r) ·ez dF .

We assume that physical properties of each fuel assembly are homogeneous, thus
justifying the spatially constant Σ terms.

2.1. Coarse mesh, finite difference (CMFD) approximation

The standard FVM relation between discrete flux and current is obtained by
replacing the flux derivative in eq. (2) by finite difference (FD) expressions and is
thus usable only for small nodal sizes. The modification appropriate for relatively
large nodal sizes characteristic for efficient reactor core models is called nodal method.
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It is based on the following approximation of discrete average currents at interfaces
Fi,ξ+ and Fi,ξ−, respectively:

¯̄Jg
i,ξ+ := −Dg

i,ξ+(
¯̄̄
Φg

i+ξ − ¯̄̄
Φg

i

)
+ CDg

i,ξ+

( ¯̄̄
Φg

i +
¯̄̄
Φg

i+ξ

)
, Dg

i,ξ+ :=
2Dg

i D
g
i+ξ

hξ

(
Dg

i + Dg
i+ξ

) ,

¯̄Jg
i,ξ− := −Dg

i,ξ−
( ¯̄̄
Φg

i − ¯̄̄
Φg

i−ξ

)
+ CDg

i,ξ−
( ¯̄̄
Φg

i−ξ +
¯̄̄
Φg

i

)
, Dg

i,ξ− :=
2Dg

i−ξD
g
i

hξ

(
Dg

i−ξ + Dg
i

)
(5)

(as a convention, capital letters will denote approximations of corresponding lower-
case quantities, e.g. ¯̄Jg

i,ξ+ ≈ ¯̄i,ξ+). At core boundary, i.e. if Fi,ξ± ⊂ ∂Ω, expressions
obtained by analogous discretization of the boundary condition (3) are used instead:

¯̄Jg
i,ξ± := Dg

i,ξ±
¯̄̄
Φg

i + CDg
i,ξ±

¯̄̄
Φg

i , Dg
i,ξ± := ± 2Dg

i γξ

hξγξ + 2Dg
i

, γg
ξ :=

1− αg
ξ

2(1 + αg
ξ)

. (6)

Different albedoes are defined for radial and axial boundaries which results in γξ = γrad

for ξ ∈ {x, u, v} and γz = γax. Also note that hx = hu = hv ≡ h.
This so called CMFD approximation alters the standard FD expressions by adding

a term containing the coupling correction factor CDg. This factor accounts for the
coarse mesh spacing by forcing the rough estimate of current to match a more ac-
curate value obtained by some appropriate refining calculation. We describe one
possible method for getting such higher-quality solution in Section 2.2.

By inserting the CMFD expressions (5) or (6) into eq. (4), we obtain the following
numerical approximation of the discrete balance relation for node Vi and group g:

2

3

∑

ξ∈{x,u,v}

¯̄Lg
i,ξ + ¯̄Lg

i,z + Σg
i,r

¯̄̄
Φg

i =
2∑

g′=1
g′ 6=g

Σg′→g
i,s

¯̄̄
Φg′

i +
χg

Keff

2∑

g′=1

νΣg′
i,f

¯̄̄
Φg′

i , (7)

where ¯̄Lg
i,ξ :=

¯̄Jg
i,ξ+− ¯̄Jg

i,ξ−
hξ

is the neutron leakage term expressing the average net neu-

tron current through faces orthogonal to direction ξ. Using the lexicographic ordering
of nodes inside the core, a matrix formulation follows:

[
L1 + CD1 + ΣΣΣ1

r 0
−ΣΣΣ1→2

s L2 + CD2 + ΣΣΣ2
r

]

︸ ︷︷ ︸
M

·
[

¯̄̄
ΦΦΦ1

¯̄̄
ΦΦΦ2

]

︸ ︷︷ ︸
¯̄̄
ΦΦΦ

=
1

Keff

[
νΣΣΣ1

f νΣΣΣ2
f

0 0

]

︸ ︷︷ ︸
F

·
[

¯̄̄
ΦΦΦ1

¯̄̄
ΦΦΦ2

]

︸ ︷︷ ︸
¯̄̄
ΦΦΦ

, (8)

where
¯̄̄
ΦΦΦg is a vector of NM average fluxes in group g, Lg and CDg are matrices

of finite-difference and correction factors, and ΣΣΣg
r , ΣΣΣg

f , ΣΣΣ1→2
s are diagonal matrices of

reaction cross sections. All matrices are sparse of order NM .
Being a discrete analogue of the eigenvalue problem (1)–(3) for the neutron dif-

fusion operator, eq. (8) expectedly constitutes a matrix eigenvalue problem. We also
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expect the same behaviour of its eigensolutions which allows us to use the standard

power method for calculating the largest eigenvalue Keff and the eigenvector
¯̄̄
ΦΦΦg of

average nodal fluxes. The actual implementation of this so called CMFD iteration
consists of two levels – the outer source iteration advancing the eigenvalue approxi-
mation as in the classical power method and the inner calculation of the fluxes vector
according to eq. (8) with a fixed right-hand side.

2.2. Refinement of the CMFD approximation

After a few eigenvalue updates, the CMFD iteration is interrupted to refine
the iteration matrix by determining new correction factors. For this purpose, one-
dimensional diffusion equations are formed for each direction eξ by performing the
transverse integration procedure. For a chosen node Vi and any of the radial di-
rections, this amounts to integrating eq. (1) over a section slicing through the node
orthogonally to the given direction. To illustrate the procedure for the x-direction,
we integrate the ‘flux version’ of the equation (obtained by inserting (2) into eq. (1))
along the y and z axes and make an average over the cross-section area. This yields
the following 1D diffusion equation (group index will be omitted in this section):

−Di
d2 ¯̄φi(x)

dx2
+ Σi,r

¯̄φi(x) = ¯̄si(x)− ¯̄li(x) (9)

for the unknown transverse-averaged flux :

¯̄φi(x) :=
1

hz

∫ hz/2

−hz/2

1

2yt
i(x)

∫ yt
i(x)

−yt
i(x)

φ(x, y, z) dy dz , (10)

where yt
i(x) = 1/

√
3(h − |x|) represents the radial transverse boundary of the node

(the bold line in Fig. 1). The source term ¯̄si(x) abbreviates the transverse-averaged

right-hand side of eq. (1), whereas the transverse leakage term ¯̄li(x) basically contains
the normal components of neutron currents through transverse boundary faces Fi,u±,
Fi,v± and Fi,z±. Since the CMFD solution provides only the average surface currents
and their spatial dependence is not known until the transverse integrated equations in
the remaining directions are solved, we need to approximate the transverse currents
shapes to establish ¯̄li(x). By inserting (10) into eq. (9) and denoting the cusp of the
boundary function yt

i(x), it becomes clear, however, that we also need to cope with

the singularities that arise in ¯̄li(x) due to the differentiation of yt
i(x) and which form

the other part of the transverse leakage term.
There are currently two approaches to the problem of hexagonal transverse leak-

age approximation investigated at our department. In the first, originally described
in [1], the hexagonal problem is conformally mapped to a rectangular one, effectively
eliminating the source of the singularities. In the other, invented by M.R. Wag-
ner ([5]) and followed in this paper, singular terms in ¯̄li(x) are neglected. This

gives the approximation ¯̄Li(x) ≈ ¯̄li(x) which transforms eq. (9) into an approximate
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equation. We then seek its solution ¯̄Φi(x) ≈ ¯̄φi(x) so that the 1D problem remains
consistent with the original 3D one in the sense of preserving the nodal averages of
approximated quantities:

1

V

∫ h/2

−h/2

2yt
i(x)hz

¯̄Φi(x) dx =
¯̄̄
Φi,

1

V

∫ h/2

−h/2

2yt
i(x)hz

¯̄Li(x) dx =
¯̄̄
Lyz

i . (11)

Average nodal leakage
¯̄̄
Lyz

i through faces intersecting the y and z axes is obtained
by integrating the 1D diffusion equation from −h/2 to h/2 and comparing the result
with the original 3D eq. (7). This leads to:

¯̄̄
Lyz

i :=
2

3
( ¯̄Li,u + ¯̄Li,v)−

1

3
¯̄Li,x + ¯̄Li,z. (12)

It is reasonable to assume that spatial variation of the transverse leakage function
¯̄Li(x) is determined by the leakages through the transverse boundaries, i.e.

¯̄Li(x) = f t,rad
i (x)− 1

3
¯̄Li,x, (13)

where the shape function f t,rad
i (x) involves only ¯̄Li,u,

¯̄Li,v,
¯̄Li,z and the second term

ensures the consistency, whatever singularities the exact function ¯̄li(x) may contain.
Transverse integration in the axial direction leads to a z-direction diffusion equa-

tion formally identical to eq. (9). The transverse-averaged flux is now defined as

¯̄φi(z) :=
1

B

∫ h/2

−h/2

∫ yt
i(x)

−yt
i(x)

φ(x, y, z) dy dx

and hence the transverse leakage term comprises only currents through faces orthog-
onal to the horizontal cross-section of the node. The approximate neutron balance
relation may then be formally obtained by replacing ¯̄φi(z) and ¯̄li(z) in the axial ver-
sion of eq. (9) with their approximations ¯̄Φi(z) and ¯̄Li(z), respectively. They are
again constructed so as to make the 1D and 3D equations consistent:

1

hz

∫ hz/2

−hz/2

¯̄Φi(z) dz =
¯̄̄
Φi,

1

hz

∫ hz/2

−hz/2

¯̄Li(z) dz =
¯̄̄
Lxy

i :=
2

3

∑

ξ∈{x,u,v}

¯̄Li,ξ (14)

Introducing the axial transverse profile function f t,ax
i (z) correspondingly to the radial

case, we have ¯̄Li(z) = f t,ax
i (z) since there are no singularities in ¯̄li(z).

The simplest transverse profile function can be obtained by assuming a non-
varying (flat) transverse leakage throughout the node, i.e. f t,rad

i (x) := 2
3
( ¯̄Li,u + ¯̄Li,v)

+ ¯̄Li,z and f t,ax
i (z) :=

¯̄̄
Lxy

i . This approximation can be improved by taking into
account the transverse leakages of two adjacent nodes Vi−x, Vi+x and considering
the consistency conditions for ¯̄Li(x) also in their respective intervals. Assuming
a parabolic transverse leakage profile, these three conditions form a system of three
algebraic equations for the parabola’s coefficients. Restriction of the resulting poly-
nomial to [−h/2, h/2] then defines f t,rad

i (x). An analogous approach is used in the
axial direction.
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2.3. Solution procedure

Equations (9) are cast into a group-matrix form and solved for both groups
simultaneously by a semi-analytic method, first in the radial directions. Right-hand
sides of the equations are defined using the results of the latest finished CMFD
iteration. The algorithm sweeps through all pairs of nodes in given radial plane and
direction, using the interface flux and current continuity conditions and the weighted
residual method to solve the approximate 1D diffusion equations. The solution is
expressed in terms of the face-averaged radial currents. Once these currents are
known for all nodes in all planes, they are used to specify the transverse leakage term
on the right-hand sides of the z-direction equations. Base-averaged axial currents
can then be determined in the same manner (see [3] or [2] for further details). CMFD
correction factors are finally obtained from eq. (5), (6) by equating their right-hand
sides to the high-accuracy currents from the radial and axial sweeps. This completes
the two-node subdomains solution and specifies new elements of the CDg matrices,
which in turn update the CMFD iteration matrix M (cf. eq. (8)). Another few
CMFD iterations advancing the eigensolution are then performed and again followed
by refinement sweeps. This procedure is repeated as long as the CMFD matrix
changes considerably after each refining step.

The converged vector of node average fluxes may be analysed in various ways.
Specifically for the benchmark problem presented in Section 3, we need the average
nodal powers normalized to the average power of the whole core:

¯̄̄
Pi :=

1

P

(
νΣ1

i,f
¯̄̄
Φ1

i + νΣ2
i,f

¯̄̄
Φ2

i

)
, i = 1, 2, . . . , NM ; P :=

1

NM

NM∑
j=1

(
νΣ1

j,f
¯̄̄
Φ1

j + νΣ2
j,f

¯̄̄
Φ2

j

)
,

and the axial offset, defined as the percentage difference between the average power
generated in the upper and the lower halves of the core.

3. Numerical tests and conclusions

We tested the developed method by “Benchmark problem no. 6” from [1]. The
investigated VVER-1000 type core is 200 cm high and has 163 fuel assemblies with
radial pitch of 23.6 cm. As in [1], we divided the core into 10 axial layers, i.e. the
height of each node was hz = 20 cm. The calculation was finished by convergence of
correction factors, indicated in step s by

∥∥CD(s) − CD(s−1)
∥∥
∞ < ε = 10−6.

Table 1 shows deviations of the results from those of a fine-mesh finite-difference
method DIF3D (reference is given in [1]), measured as the maximum and root mean

square errors in average nodal powers (∆
¯̄̄
Pmax and ∆

¯̄̄
Prms, resp.), error in axial offset

(∆AO), and error in critical number (∆Keff). The table compares four versions of
the method based on four combinations of transverse leakage approximation with
two versions of the ANC code presented in [1]. ANC-HW uses Wagner’s approach
to hexagonal transverse leakage (as do we in this paper) while ANC-HM uses the
conformal mapping technique. Neither of the ANC methods uses CMFD to advance
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Method † ∆
¯̄̄
Pmax [%] ∆

¯̄̄
Prms [%] ∆AO [%] ∆Keff [pcm=10−5]

rFaF 10.3 4.5 −1.10 156.9
rFaQ 10.1 4.4 −1.15 138.1
rQaF 4.9 1.7 −0.41 7.6
rQaQ 4.7 1.7 −0.48 −12.3

ANC-HW 12.0 N/A‡ 1.17 113.0
ANC-HM 0.9 N/A‡ 0.07 13.0
†) r . . . approx. of f t,rad

i , a . . . approx. of f t,ax
i ; F . . . flat, Q . . . quadratic

‡) result was not available

Tab. 1: Benchmark results.

the global solution, however, and both assume different transverse leakage shapes
than do we in our four schemes.

The results indicate that it is the transverse leakage approximation used in radial
direction that mostly determines the accuracy of results. Quadratic approximation
proves to be superior to the flat one, although when the latter is used in the axial di-
rection (in which the nodes are rectangular), it may give somewhat better core-wise
average results. This results in a slightly better axial offset characterization and,
in the case of sufficiently low maximum flux errors, also in a better critical number
estimate. Either version of our method performs better than the ANC-HW method,
which was developed under the same assumptions based on original Wagner’s ideas,
except for the transverse leakage profile. However, the superior accuracy of the con-
formal mapping technique for flux prediction still remains unmatched. This suggests
that further research into integration of the CMFD and conformal mapping methods
could yield fruitful results.
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DISCONTINUOUS GALERKIN METHOD FOR THE SIMULATION
OF 3D VISCOUS COMPRESSIBLE FLOWS∗

Martin Hoĺık, Vı́t Doleǰśı

1. Introduction

Our goal is to solve an unsteady viscous compressible flow which is described
by the system of the Navier-Stokes equations. Our aim is to develop a sufficiently
efficient, robust and accurate numerical method.

It is promising to use the discontinuous Galerkin method (DGM), which is based
on a piecewise polynomial but discontinuous approximation, which is suitable for
problems with discontinuities. We prefer the discontinuous Galerkin finite element
(DGFE) method with symmetric, nonsymmetric and/or incomplete variant of stabi-
lization and interior and boundary penalty terms. These schemes are usually denoted
as SIPG, NIPG and IIPG, respectively.

The most usual approach for the time discretization is method of lines. Explicit
methods such as the Runge-Kutta methods are very popular for their simplicity and
a high order of accuracy. However, they suffer from strong time step restrictions.
Fully implicit schemes lead to a system of highly nonlinear algebraic equations at
each time step whose solution is complicated. To avoid this disadvantage we employ
a semi-implicit method for the time discretization, which is based on a suitable
linearization of the fluxes. The linear terms are treated implicitly and the nonlinear
ones explicitly.

2. Compressible flow problem

For the description of motion of a viscous compressible flow we use the system of
Navier-Stokes equations.

Let Ω ⊂ IR3 be a bounded domain and T > 0. We set QT = Ω×(0, T ) and by ∂Ω
we denote the boundary of Ω which consists of several disjoint parts. We distinguish
inlet ΓI , outlet ΓO and impermeable walls ΓW on ∂Ω. Using the Fourier law and
some relations from physics, we can write these equations in the dimensionless form

∂w

∂t
+∇ · ~f(w) =

3∑

s=1

∂

∂xs

(
3∑

k=1

Ksk(w)
∂w

∂xk

)
in QT , (1)

∗This work is a part of the research project MSM 0021620839 financed by the Ministry of
Education of the Czech Republic and was partly supported by grant No. 316/2006/B-MAT/MFF
of the Grant Agency of the Charles University Prague.
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where
w = (w1, . . . , w5)

T = (ρ, ρv1, ρv2, ρv3, e)T (2)

is the so-called state vector, ~f = (f 1,f 2, f 3),

f s(w) = (f (1)
s (w), . . . , f (5)

s (w))T (3)

= (ρvs, ρvsv1 + δs1p, ρvsv2 + δs2p, ρvsv3 + δs3p, (e + p) vs)
T, s = 1, 2, 3,

are the so-called inviscid (Euler) fluxes, where ρ, p, and e stand for the density,
the pressure, and the total energy, respectively, and δ is the Kronecker’s delta. For
description of the matrix Ksk(w) : IR5 → IR5 × IR5, s, k = 1, 2, 3 see [6].

In order to close the system we use the following thermodynamical relations: the
state equation for perfect gas and the relation for the total energy. The system is of
hyperbolic-parabolic type. It is equipped with initial and boundary conditions. For
more details see [1].

2.1. Properties of inviscid fluxes

From the expression of the Euler fluxes f s, s = 1, 2, 3 we find that f s can be
written (see [1]) in the form

f s(w) = As(w)w, s = 1, 2, 3, (4)

where As(w) are the Jacobi matrices of the mappings f s.

3. Discretization

For discretization we employ the discontinuous Galerkin finite element method
(DGFEM), which takes advantages from finite element method as well as from finite
volume method. DGFEM is based on piecewise polynomial approximation without
any requirement on interelement continuity what is suitable for problems where shock
waves and contact discontinuities appear.

Let Th (h > 0) be a partition of the domain Ω into a finite number of open three-
dimensional mutually disjoint simplexes and/or parallelograms K i.e., Ω =

⋃
K∈Th

K.
We call Th a triangulation of Ω and do not require the conforming properties from
the finite element method. We define the set of faces Fh, FD

h , F ID
h and a unit normal

vector nΓ, as can be seen in [7].
Over the triangulation Th we define the broken Sobolev space

Hk(Ω, Th) = {v; v|K ∈ Hk(K) ∀K ∈ Th}, (5)

where Hk(K) = W k,2(K) denotes the (classical) Sobolev space on element K.
We introduce the following notation v|Γ, 〈v〉Γ and [v]Γ for trace, mean value and

jump, respectively, of function v over the edge Γ, see [2].
There are several variant of DGFEM. A particular role is played by the symmetric

and nonsymmetric interior penalty Galerkin variant, denoted by SIPG and NIPG,
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respectively. The main idea of SIPG and NIPG is to append artificial integral to
each boundary integral

∫

Γ
〈∇u · ~n〉[ϕ] dS, ∇u ∈ [L2(Γ)]3, ϕ ∈ L2(Γ), (6)

arising from the use of Green’s theorem in the case of linear diffusion simply by
formal exchange of u and ϕ. We can see that this integrals vanish in case of regular
solution. In our case we use the linearization formed by the terms Ksk, see [6], or
employ the so-called incomplete interior penalty Galerkin (IIPG) method, see [7].

Similarly, as in [3] for w,ϕ ∈ [H2(Ω, Th)]
5
, we define the forms:

ãh(w, ϕ) =
∑

K∈Th

∫

K

3∑

s=1

(
3∑

k=1

(
Ksk(w)

∂w

∂xk

)
∂ϕ

∂xs

)
dx

− ∑

Γ∈FID
h

∫

Γ

3∑

s=1

(
〈

3∑

k=1

Ksk(w)
∂w

∂xk

〉Γns

)
· [ϕ]Γ dS

− Θ
∑

Γ∈FID
h

∫

Γ

3∑

s=1

(
〈

3∑

k=1

Ksk(w)
∂ϕ

∂xk

〉Γns

)
· [w]Γ dS (7)

+ Θ
∑

Γ∈FD
h

∫

Γ

3∑

s=1

(
(

3∑

k=1

Ksk(w)
∂ϕ

∂xk

)ns

)
·wB(t) dS,

b̄h(w, ϕ) = − ∑

K∈Th

∫

K

3∑

s=1

f s(w) · ∂ϕ

∂xs

dx

+
∑

Γ∈Fh

∫

Γ
H

(
w|(p)

Γ ,w|(n)
Γ , ~nΓ

)
[ϕ]Γ dS, (8)

Jσ
h (w, ϕ) =

∑

Γ∈FID
h

∫

Γ
σ[w]Γ · [ϕ]Γ dS − ∑

Γ∈FD
h

∫

Γ
σ wB(t) ·ϕ dS, (9)

where Θ is +1 in SIPG, -1 in NIPG and 0 in IIPG case and σ is a suitable coercive
parameter and wB(t) is the solution on the boundary, where Dirichlet condition is

prescribed. H
(
w|(p)

Γ ,w|(n)
Γ , ~nΓ

)
is the so-called numerical flux, well-known in the

finite volume method (see, e.g., [1, Section 3.2])
Now we can introduce the semidiscrete problem. The approximate solution of

problem (1) with initial and boundary condition is sought at each instant time t
in the space of discontinuous piecewise polynomial functions Sh defined by Sh ≡
[Sh]

5, Sh ≡ {v; v|K ∈ P p(K) ∀K ∈ Th}, where p is a positive integer and P p(K)
denotes the space of all polynomials on K of degree at most p.

In order to avoid the time step restriction and nonlinearity of the discretized
problem, we carry out a linearization of the nonlinear forms ãh and b̄h.

For w̄h,wh,ϕh ∈ Sh we define a new form bh(w̄h,wh,ϕh) using (4) and (8),
which is linear with respect to the second and the third variable and consistent
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with b̄h(·, ·) by b̄h(wh, ϕh) = bh(wh,wh,ϕh) ∀ wh,ϕh ∈ Sh. For more details see,
e.g. [3].

In a similar way, as in the case of the form b̄h, we define a new form ah(w̄h, wh,ϕh)
for w̄h,wh,ϕh ∈ Sh using properties of the forms Ksk and (7), which is also linear
with respect to its second and third variable. Moreover, it is consistent with ãh(·, ·)
by ãh(wh,ϕh) = ah(wh,wh,ϕh) ∀ wh,ϕh ∈ Sh. The definition of ah(·, ·, ·) can be
found in [3].

Now we introduce the full space-time discrete problem. The main idea of the
semi-implicit discretization is to treat the linear parts of forms ah and bh implic-
itly and their nonlinear parts explicitly. In order to obtain a sufficiently accurate
approximation with respect to the time coordinate we use the so-called backward dif-
ference formula (BDF) for the solution of the ODE semidiscrete problem. Moreover,
a suitable explicit higher order extrapolation is used in the nonlinear parts of ah

and bh.
Let 0 = t0 < t1 < . . . < tr = T be a partition of the interval (0, T ) and let

τk ≡ tk+1 − tk, k = 0, 1, . . . , r − 1, be the time steps.

Definition 1 Functions wk+1
h , k = 0, . . . , r − 1 are an approximate solution of

problem (1) with some suitable initial and boundary conditions satisfying

(a) wk+1
h ∈ Sh,

(b)
1

τk

(
n∑

l=0

αlw
k+1−l
h ,ϕh

)
+ ah

(
n∑

l=1

βlw
k+1−l
h ,wk+1

h ,ϕh

)

+bh

(
n∑

l=1

βlw
k+1−l
h , wk+1

h ,ϕh

)
+ Jh

(
wk+1

h ,ϕh

)
= 0 (10)

∀ϕh ∈ Sh, k = n− 1, . . . , r − 1,

(c) w0
h is an Sh approximation of initial condition w0,

(d) wl
h ∈ Sh, l = 1, . . . , n− 1 are given by a suitable one-step method,

where n ≥ 1 is the degree of the BDF scheme, the coefficients αl, l = 0, . . . , n, and
βl, l = 1, . . . , n, depend on time steps τk−l, l = 0, . . . , n.

The problem (10), (a)–(d) represents a system of linear algebraic equations for each
k = n− 1, . . . , r − 1, which is solved by a suitable iterative solver (e.g. GMRES).

4. Stabilization

Application of this numerical scheme to transsonic flow leads to spurious over-
shoots and undershoots in computed quantities near shock waves. We use the stabi-
lization of the scheme similar to [5]. For each Ki ∈ Th we define quantity gKi

(wh),
what measures the interelement jump of the function ρh, what is piecewise polyno-
mial approximation of ρ. Moreover, we define the forms dh and Jh which represent
artificial viscosity and interior penalty, respectively. Both terms vanish in region
where wh is smooth. In [5], the stabilization for 2D problems is derived. The choice
of exponents and another changes in forms dh and Jh for 3D is in development.
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5. Adaptive time step

In order to achieve a steady-state solution in an efficient way it is necessary to
adapt the time step during the computational process. In [4], an adaptive choice of
the time step based on a comparison of two BDF formulae was presented. However,
this approach does not seem to be very efficient for viscous compressible flow sim-
ulations. Therefore, we employ an heuristic choice of the time step which is based
on a idea to increase the time step when the “steady-state residuum” is decreasing.
Hence we put: τk =

√
const

||wk−wk−1|| , where const is a suitable constant (e.g. 10−6).

6. Implementation

The subject of this research is a part of the project ADIGMA supported by the
European Commission. This project holds in the period 2006–2009 and is devoted to
development, application and verification of higher order schemes for the simulation
of viscous compressible flow.

The presented numerical method is now being implemented within the object
oriented platform COOLFluid, developed at the Von Karman Institute in Brussel,
see [8]. The main advantage of object oriented programing is in dynamic creation

Fig. 1: Distribution of density.
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of the object. There are templates of methods for discretization in time and space,
for solving the system of equations, for any type of elements in 2D and 3D. But in
the process of computation there are created only objects which are really needed
for computation. It takes some time at the beginning for creation and initialization
of objects, but the computer code is then shorter and simpler to write.

7. Example – Wedge 3D

Wedge 3D is one of COOLFluiD test cases. It is supersonic flow (MACH = 2.0)
in channel forward facing oblique step. The initial condition is constant with values
ρ = 1.0, v = (2.366431913, 0.0, 0.0), e = 5.3.

8. Conclusion

We described a numerical solution of the compressible Navier-Stokes equations by
a combination of DGFEM and BDF. We presented SIPG, NIPG and IIPG variants of
DGFEM. These schemes are theoretically unconditionally stable, have a high order of
approximation with respect to space and time and lead to a linear algebraic systems
at each time step.
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[3] V. Doleǰśı, J. Hozman: Semi-implicit discontinuous Galerkin method for the solu-
tion of the compressible Navier-Stokes equations, European Conference on Com-
putational Fluid Dynamics, Egmond aan Zee, The Netherlands, 2006, pp. 1061–
1080.
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ANALYSIS OF THE DISCONTINUOUS GALERKIN FINITE
ELEMENT METHOD APPLIED TO A SCALAR NONLINEAR

CONVECTION-DIFFUSION EQUATION∗

Jǐŕı Hozman, Vı́t Doleǰśı

Abstract

We deal with a scalar nonstationary convection-diffusion equation with nonlinear
convective as well as diffusive terms which represents a model problem for the solu-
tion of the system of the compressible Navier-Stokes equations describing a motion
of viscous compressible fluids. We present a discretization of this model equation by
the discontinuous Galerkin finite element method. Moreover, under some assump-
tions on the nonlinear terms, domain partitions and the regularity of the exact so-
lution, we introduce a priori error estimates in the L∞(0, T ; L2(Ω))-norm and in the
L2(0, T ;H1(Ω))-seminorm. A sketch of the proof is presented.

1. Introduction

Our goal is to develop a sufficiently robust, accurate and efficient numerical
method for the solution of the system of the compressible Navier-Stokes equations
describing a motion of viscous compressible fluids. Due to the lack of the theory con-
cerning an existence of the solution of the Navier-Stokes equations we consider the
model problem represented by a nonstationary two-dimensional convection-diffusion
equation with nonlinear convection as well as diffusion.

Among a wide class of numerical methods, the discontinuous Galerkin finite
element method (DGFEM) seems to be a promising technique for the solution of
convection-diffusion problems. DGFEM is based on a piecewise polynomial but dis-
continuous approximation, for a survey, see, e.g., [2], [3]. Within this paper we deal
with the space semidiscretization of the model problem with the aid of the three vari-
ants of DGFEM. Namely nonsymmetric (NIPG), symmetric (SIPG) and incomplete
interior penalty Galerkin (IIPG) techniques, see [1].

This article represents a generalization of research papers [5], [6], [7], and [8],
where the linear diffusion term was considered. Moreover, let us cite works [4], [9],
and [10], where simpler forms of nonlinear diffusion were analysed.

∗This work is a part of the research project MSM 0021620839 financed by the Ministry of
Education of the Czech Republic and it was partly supported by Grant No. 316/2006/B-MAT/MFF
of the Grant Agency of the Charles University Prague.
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2. Problem formulation

We consider the following unsteady nonlinear convection-diffusion problem. Let
Ω ⊂ IR2 be a bounded polygonal domain and T > 0. We seek a function u : QT → IR,
QT = Ω× (0, T ), such that

(a)
∂u

∂t
+

2∑

s=1

∂fs(u)

∂xs

= div(IK(u)∇u) + g in QT , (1)

(b) u|∂Ω×(0,T ) = uD, (2)

(c) u(x, 0) = u0(x), x ∈ Ω, (3)

where g : QT → IR, uD : ∂Ω × (0, T ) → IR, u0 : Ω → IR are given functions,
f1, f2 ∈ C1(IR) represent convective terms and the matrix IK(u) ∈ IR2,2 plays a role
of nonlinear anisotropic diffusive coefficients. If IK(u) = εII, where ε is a positive
constant and II ∈ IR2,2 the unit matrix, then problem (1) reduces to the equation
considered in [5], [6], [7], [8]. For simplicity we prescribe the Dirichlet condition
on the whole boundary but it is also possible to consider mixed Dirichlet-Neumann
boundary conditions.

Formally, we introduce a weak solution u of the problem (1) by

d

dt
(u(t), v) + b(u(t), v) + a(u(t), v) = (g(t), v) ∀ v ∈ H1

0 (Ω), a.e. t ∈ (0, T ), (4)

where u(t) denotes the function on Ω such that u(t)(x) = u(x, t), x ∈ Ω. Further,
(·, ·) denotes the L2-scalar product, a(·, ·) and b(·, ·) are nonlinear forms represent-
ing the diffusive and convective terms, respectively. We also consider appropriate
representation of initial and boundary conditions. For details see [4], [7].

3. Discretization

Let Th (h > 0) be a family of the partitions of the domain Ω ⊂ IR2 into triangular
elements. We do not require the conformity of the mesh, i.e., the so-called hanging
nodes are allowed. However, more general elements (even non-convex) can be con-
sidered within the frame of DGFEM, see [7]. By Fh we denote the smallest possible
set of all edges of all elements K ∈ Th. Furthermore, let F I

h and FD
h represent the in-

terior and the boundary edges of Th, respectively. Obviously Fh = F I
h ∪FD

h . Finally,
for each Γ ∈ Fh we define a unit normal vector ~nΓ. We assume that ~nΓ, Γ ⊂ ∂Ω has
the same orientation as the outer normal of ∂Ω. For ~nΓ, Γ ∈ FI the orientation is
arbitrary but fixed for each edge.

The approximate solution is sought in a space of piecewise polynomial but dis-
continuous functions

Shp ≡ Shp (Ω, Th) = {v; v|K ∈ Pp(K) ∀K ∈ Th}, (5)

where Pp(K) denotes the space of all polynomials on K of degree ≤ p, K ∈ Th.
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For each Γ ∈ F I
h there exist two elements KL, KR ∈ Th such that Γ ⊂ KL ∩KR.

We use a convention that KR lies in the direction of ~nΓ and KL in the opposite
direction of ~nΓ. For v ∈ Shp, by

v|(L)
Γ = trace of v|KL

on Γ, v|(R)
Γ = trace of v|KR

on Γ (6)

we denote the traces of v on edge Γ, which are different in general. Additionally,

[v]Γ = v|(L)
Γ − v|(R)

Γ , 〈v〉Γ =
1

2

(
v|(L)

Γ + v|(R)
Γ

)
, (7)

denotes the jump and the mean value of function v over the edge Γ, respectively.
For Γ ⊂ ∂Ω there exists an element KL ∈ Th such that Γ ⊂ KL ∩ ∂Ω. Then for
v ∈ Shp, we put: v|(L)

Γ = trace of v|KL
on Γ, 〈v〉Γ = [v]Γ = v|(L)

Γ . In case that
[·]Γ and 〈 · 〉Γ are arguments of

∫
Γ . . . dS, Γ ∈ Fh we omit the subscript Γ and write

simply [·] and 〈 · 〉, respectively.
Similarly as in [5], it is possible to derive the space semi-discretization of (1).

A particular attention should be paid to the nonlinear diffusive term. In order to
replace the interelement continuity, we add some stabilization and penalty terms into
formulation of the discrete problem. The convective term is approximated with the
aid of a numerical flux H(·, ·, ·), known from the finite volume method.

Therefore, we say that uh ∈ C1(0, T ; Shp) is the semi-discrete solution of (1) if
(uh(0), vh) = (u0, vh) ∀vh ∈ Shp and

(
∂uh(t)

∂t
, vh

)
+ bh(uh(t), vh) + aΘ

h (uh(t), vh) + αJσ
h (uh(t), vh) = `Θ

h (uh(t), vh) (t) (8)

∀ vh ∈ Shp, ∀ t ∈ (0, T ),

where

aΘ
h (u, v) =

∑

K∈Th

∫

K
IK(u)∇u · ∇v dx− ∑

Γ∈Fh

∫

Γ
〈IK(u)∇u · ~n〉[v] dS

+ Θ
∑

Γ∈Fh

∫

Γ
〈IK(u)∇v · ~n〉[u] dS, (9)

bh(u, v) = − ∑

K∈Th

∫

K

2∑

s=1

fs(u)
∂v

∂xs

dx +
∑

Γ∈Fh

∫

Γ
H(u|(L)

Γ , u|(R)
Γ , ~nΓ) [v]dS, (10)

Jσ
h (u, v) =

∑

Γ∈Fh

∫

Γ
σ[u] [v] dS, (11)

`Θ
h (u, v)(t) =

∫

Ω
g(t) v dx +

∑

Γ∈FD
h

∫

Γ

(
Θ IK(u)∇v · ~n uD(t) + σ uD(t) v

)
dS. (12)

Nonlinear forms aΘ
h (·, ·) and bh(·, ·) are the discrete variants of the forms a(·, ·) and

b(·, ·), respectively. According to value of parameter Θ, we speak of SIPG (Θ = −1),
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IIPG (Θ = 0) or NIPG (Θ = 1) variants of DGFEM. Penalty terms are represented
by Jσ

h and the penalty parameter function σ in (11) is defined as σ|Γ = CW · |Γ|−1,
Γ ∈ Fh, where CW ≥ 0 is a suitable constant depending on the used variant of the
scheme and on the degree of polynomial approximation. The value of multiplicative
constant α before the penalty form Jσ

h will be specified in Section 4, assumption (14).
The problem (8) exhibits a system of ordinary differential equations for uh(t)

which has to be discretized by a suitable ODE method.
If the numerical flux H is consistent with the convective fluxes f1, f2 (i.e.,

H(u, u, ~n) = f1(u)n1 + f2(u)n2 ∀u ∈ IR ∀~n = (n1, n2)) then we find that the suffi-
ciently regular exact solution u satisfies

(
∂u(t)

∂t
, vh

)
+ bh(u(t), vh) + aΘ

h (u(t), vh) + αJσ
h (u(t), vh) = `Θ

h (u(t), vh) (t) (13)

∀ vh ∈ Shp ∀ t ∈ (0, T ),

4. Error analysis

To carry out the error analysis we need to specify the additional assumptions
on mesh, nonlinear diffusion term and regularity of the solution u of the continuous
problem. Therefore, we assume that:

(A1) The matrix IK(v) = {kij(v)}2
i,j=1, kij(v) : IR → IR, appearing in the diffusion

terms satisfies

(a) ‖IK(v)‖∞ ≤ CU < ∞ ∀ v ∈ IR,

(b) ‖IK(v1)− IK(v2)‖∞ ≤ CL|v1 − v2| ∀ v1, v2 ∈ IR, (14)

(c) ξT IK(v)ξ ≥ α‖ξ‖2, α > 0, ∀ v ∈ IR, ∀ ξ ∈ IR2,

where ‖ · ‖∞ represents the l∞-matrix norm, i.e., ‖IK‖∞ = max
1≤i≤n

∑n
j=1 |kij|.

(A2) The weak solution u is sufficiently regular, namely

(a) u ∈ L2(0, T ; Hp+1(Ω)),
∂u

∂t
∈ L2(0, T ; Hp(Ω)), p ≥ 1 (15)

(b) ‖∇u(t)‖L∞(Ω) ≤ CD for a.a. t ∈ (0, T ),

where p ≥ 1 denotes the given degree of the polynomial approximation.

(A3) The triangulations Th, h ∈ (0, h0) are locally quasi-uniform and shape-regular
(for detailed definitions see [4]).

Now, we are ready to formulate the main result of this paper.
Theorem Let assumptions (A1) be satisfied, let u be the exact solution of the

continuous problem satisfying (A2). Let Th, h ∈ (0, h0) be a family of triangulations
satisfying (A3) and let the numerical flux H from (10) be consistent, conservative
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and Lipschitz continuous. Let uh ∈ Shp be the solution of the discrete problem given
by (8). Then the discretization error eh = uh − u satisfies

max
t∈[0,T ]

‖eh(t)‖2
L2(Ω) +

α

2

∫ T

0
|||eh(ϑ)|||2dϑ ≤ Ch2p, (16)

where |||v|||2 :=
∑

K∈Th
|v|2H1(K) + Jσ

h (v, v) and C > 0 is a constant independent of h.

Sketch of the proof : Let u ∈ Hp+1(Ω, Th) be the solution of the continuous
problem. For v ∈ L2(Ω) we denote by Πhv the L2-projection of v on Shp. We
set ξ(t) = uh(t) − Πhu(t) ∈ Shp , η(t) = Πhu(t) − u(t), eh(t) = uh(t) − u(t) =
ξ(t) + η(t) for a.a. t ∈ (0, T ). We subtract (13) from (8), set vh := ξ and add terms
−aΘ

h (Πhu, ξ) + `Θ
h (Πhu, ξ) on both sides of this identity. Then we obtain

(
∂ξ

∂t
, ξ

)
+ aΘ

h (uh(t), ξ)− aΘ
h (Πhu, ξ) + `Θ

h (Πhu, ξ)− `Θ
h (uh, ξ) + αJσ

h (ξ, ξ)︸ ︷︷ ︸
=:χ1

= −
(

∂η

∂t
, ξ

)
+ bh(u, ξ)− bh(uh, ξ)− αJσ

h (η, ξ)

︸ ︷︷ ︸
=:χ2

(17)

+ aΘ
h (u, ξ)− aΘ

h (Πhu, ξ) + `Θ
h (Πhu, ξ)− `Θ

h (u, ξ)︸ ︷︷ ︸
=:χ3

.

With the aid of the multiplicative trace inequality, inverse inequality and approxima-
tion properties of the space Shp, (see [7, Lemmas 4.2–4.4]), we estimate terms χ1, χ2

and χ3:

|χ2| ≤ C
{
hp|∂u/∂t|Hp(Ω)‖ξ‖L2(Ω) + |||ξ|||(hp+1|u|Hp+1(Ω) + αhp|u|Hp+1(Ω) + ‖ξ‖L2(Ω))

}
.

(18)
Analogously as in [9] we derive

|χ3| ≤ C
(
CUhp|u|Hp+1(Ω) + CDCLhp+1|u|Hp+1(Ω)

)
|||ξ|||. (19)

Finally, by a particular choice of the constant CW we obtain

χ1 ≥ α

2
|||ξ|||2 − C

(
CUhp|u|Hp+1(Ω) + CDCL‖ξ‖L2(Ω))

)
|||ξ|||. (20)

In consequence, we use inequalities (18)–(20) in identity (17), apply Young’s
inequality, and integrate from 0 to t, t ∈ [0, T ]. Finally application of the Gronwall’s
lemma leads to desirable error estimate (16).

5. Conclusion

We presented a space semi-discretization of a scalar nonstationary convection-
diffusion equation (with nonlinear convection as well as diffusion) with the aid
of SIPG, IIPG and NIPG variants of DGFEM. We presented a priori error esti-
mates which are optimal in the L2(0, T, H1(Ω))-seminorm but suboptimal in the
L∞(0, T, L2(Ω))-norm.
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FINITE ELEMENT MODELING OF WOOD STRUCTURE∗

Petr Koňas

Abstract

This work is focused on a weak solution of a coupled physical task of the microwave
wood drying process with stress-strain effects and moisture/temperature dependency.
Due to the well known weak solutions for the individual physical fields, the author
concerns with the coupled stress-strain relation coupled with the moisture and tem-
perature distributions. For the scale dependency the subgrid upscaling method was
used. The solved region is assumed to be divided into discontinuous subregions ac-
cording to the investigated scale. This approach suggests sequential type of solution
for highly coupled tasks. This way, very huge structures (huge with regard to the
geometry and also physics) can be solved in the reasonable time and with reason-
able memory consumptions. Main emphasis was put on evaluation of the structural
response of the whole complex. Due to the influence of the moisture, temperature,
and time, the coupled physical task of the structural response is solved. Suggested
approach is of course usable not only for the structural response, but also for the other
physical fields, which were taken into account. The weak solution is based on a slight
modification of the Ritz-Galerkin method.

Keywords: FEM, multiphysics, microwave wood drying, upscaling, homogenization

1. Introduction

Microwave drying of wood is one of the most difficult problems of Wood Science.
The problem is coupled according to the following variables: moisture w, tempera-
ture T , velocity of free water within the conductive wood elements v, intensity of
electric field E, intensity of magnetic field B, static pressure p and displacement
of structural parts u. Parabolic equations arise as models of many partial physical
processes which occur during the drying process. The time-dependency affects most
of these processes. Generally, diffusive partial differential equations (PDE) represent
usually the base constitutive relationships. The electromagnetic field is sufficiently
described by the reduced system of Maxwell’s equations. To solve the coupled system,
we evaluate the following unknowns: T,w, p,u,v,E,B,H,J,D. These quantities are
considered as elements of appropriate Hilbert spaces.

The first set of equations in the coupled system consists of the Maxwell’s equations

∇× E =
∂B

∂t
, ∇ ·D = ρe, (1)

∇×H = J +
∂D

∂t
, ∇ ·B = 0,

∗This work was supported by grant No. GP106/06/P363 of the Czech Science Foundation.
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where t is the time, B is the magnetic flux density, D is the electric flux density, H is
the magnetic field intensity, E is the electric field intensity, J is the current density,
ρe is the electric charge density. Due to the anisotropy of wood, we can itemize these
variables to D = εE, B = µH, J = σE, where ε is permittivity, µ is permeability,
and σ is the electric conductivity of the material.

Natural requirement for continuous charge is satisfied by the equation of conti-
nuity

∇ · J = −∂ρe

∂t
. (2)

However, the electro-dynamical effects are not alone. Also the influence of the
moisture and pressure changes in wood should be included. Content of water in the
material is obviously separated into free water and water bonded through H-bridges
(the chemical bonded water by stronger types of bindings are omitted). Bonded
water keeps diffusive character. Interaction of moisture, temperature and static
pressure can be described by system of equations (6). Widely disputed is the diffusive
character of the static pressure. For this reason, the last equation is often omitted
in the following system

ρC
∂T

∂t
−∇kTw∇w −∇kTp∇p−∇kTT∇T = qabs + kbT

(Text − T ) ,

∂w

∂t
−∇kww∇w −∇kwp∇p−∇kwT∇T = kbw (wext − w) , (3)

∂p

∂t
−∇kpw∇w −∇kpp∇p−∇kpT∇T = kbp (pext − p) ,

where ρ is the density, C is the heat capacity, qabs is the density of energy, Text

is the temperature in the surroundings, w is the mass concentration (moisture
content), wext and pext are moisture content, and static pressure in the surround-
ings, respectively, kbw ,kbT

,kbp are convective coefficients and kTw,kTp,kTT,kww,
kwp,kwT,kpw,kpp, kpT are the matrices of diffusion coefficients.

Structural response of the wood structure is described by parabolic equation

ρ
∂u

∂t2
− (∇cEG + (w − wext)∇cKbw + (T − Text)∇cK

bT

)∇u−∇cλw,T
∇∂uvel

∂t
+ Cw · w + Cw2 · w2 + CT · T + CT2 · T 2 + CwT · wT + C = F. (4)

Definition of individual coefficients for equation (4) was described in [5], where
generally orthotropic elastic properties related to moisture and temperature are de-
fined. This described model is valid for diffusive transport of moisture and temper-
ature. It is not appropriate (due to the physical nature of the phenomenon) for the
free water movement. This transport is allocated into inter-cellular spaces and cell
lumen. Description of this process can be done with Navier-Stokes equation
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∂ν

∂t
+ (∇× ν)× ν +

1

2
∇ν2 = −∇pfl

ρ
−∇U +

η

ρ
∇2ν, (5)

where ∇U is the potential and ν the velocity of the fluid.
Since the weak form of equations (1)–(3) and (5) is well known, see e.g. [2], [1],

we focus on equation (4), where we will outline the variational formulation for the
mixed type of elements in numerical subgrid upscaling method ([8], [6], [7], and [4]).
It should be noted that we will suppose the sequential type of mentioned equations.
This assumption leads to simplification of equation (4), where T and w are constant
in one time-step.

2. Methods

Assembling of the weak form of equation (4) is realized with regard to the schema
of the Ritz-Galerkin method by the following quadratic functional, which should be
minimal:

G(u) =

(
ρ
∂2u

∂t2
, ξ

)
−

((
∇cEG + (w − wext)∇cKbw

+ (T − Text)∇cK
bT

)
∇u, ξ

)
−

(
∇cλw,T

∇∂u

∂t
, ξ

)

− 2
(
F− (

Cw · w + Cw2 · w2 + CT · T + CT 2 · T 2 + CwT · wT + C
)
, ξ

)
= 0. (6)

This functional is well-defined for all ξ ∈ H (Ω) and (·, ·) stands for the scalar
product on this Hilbert space. By the above mentioned simplifications, we obtain the
integral form. Let the functional equation (6) be defined on the vector space V , which
is a finite dimensional subspace of H (Ω). Let us assume the Ω to be partitioned
into a finite number of subregions on very fine scale δ1. Further, we assume that m1

of these subregions are covered by mesh on this scale (subgrids). Functional from
equation (6) is then considered on vector subspaces V δ1

1 , V δ1
2 , . . . , V δ1

m1
⊆ V , where

V
δj

j for j = 1, . . . ,m1 are Raviart-Thomas (RT) spaces. Subspaces may not fill the

full space V . It means that V δ1
1 ∪ V δ1

2 ∪ V δ1
3 ∪ . . . ∪ V δ1

m1
≡ V δ1 ⊆ V . Simultaneously,

we declare mentioned vector subspaces with bases

{
ϕ

δj

Vj ,1, ϕ
δj

Vj ,2, . . . , ϕ
δj

Vj ,n1

}
⊆ V

δj

j , j = 1, 2, . . . , m1.

Complete basis

ϕδ1 ≡
m1⋃
j=1

{
ϕδ1

Vj ,1, ϕ
δ1
Vj ,2, . . . , ϕ

δ1
Vj ,nj

}
⊂ V δ1 .

on vector space V δ1 is derived from the fine mesh of subgrids, where linear basis func-
tions are used. Similarly, let us partition Ω by further linear meshes Ψδ2 , Ψδ3 , . . . , Ψδi
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for different scales δ1 < δ2 < . . . < δi, where again regions m2,m3, . . . , mi cover some
parts of Ω on the specific scale. Consequently, similar vector subspaces can be dis-
tinguished V δk

1 , V δk
2 , . . . , V δk

mk
⊆ V , k = 2, 3, . . . , i with the same requirements:

V δ2
1 ∪ V δ2

2 ∪ V δ2
3 ∪ . . . ∪ V δ2

m2
≡ V δ2 ⊆ V,

V δ3
1 ∪ V δ3

2 ∪ V δ3
3 ∪ . . . ∪ V δ3

m3
≡ V δ3 ⊆ V,

...

V δi
1 ∪ V δi

2 ∪ V δi
3 ∪ . . . ∪ V δi

mi
≡ V δi ⊆ V. (7)

In addition, we will tie subspaces by these important rules:

V δ1 ⊆ V δ2 ⊆ V δ3 ⊆ . . . ⊆ V δi ≡ V, (8)

where δi is maximal scale V δi ≡ V and V is defined on the entire Ω.
All unknown functions can be decomposed to individual scales, e.g.:

u = uδ1 + uδ2 + . . . + uδi , (9)

on some Ω0. This decomposition of unknowns to individual scales affects the solution
in the sense of finite elements and the minimization of functional equation (6) does
not provide the common appearance of Ritz system.

Let us consider PDE Au = f , u ∈ V with a differential operator A and let us
follow the common steps in the solution of this task for multi-scale problems.

Functional which will be minimized has the standard form ([3]):

G(u) = (u,u)A − 2 (f ,u) . (10)

Equation (9) will be substituted into the first part of equation (10):

L(u) =
(
uδ1 + uδ2 + . . . + uδi ,uδ1 + uδ2 + . . . + uδi

)
A

. (11)

It can be expanded due to the rules of the bilinear form in the following way:

L(u) =
i∑

k=1

i∑
j=1

(
uδk ,uδj

)
A

. (12)

Our problem is reduced into the task of finding such function u which minimizes
the functional (10). This functional is minimized by a function in the form:

ũδj
n =

sj∑

k=1

b
δj

k ϕ
δj

k , (13)

where sj = dim V δj , ϕ
δj

k denote the basis functions in V δj and b
δj

k represent variables

which will be evaluated in the point of the approximate minimum a
δj

k . As the first

106



step, we estimate the functional in the subgrid on the scale δ1. The minimizing
function is denoted as:

uδj
n =

sj∑

k=1

a
δj

k ϕ
δj

k . (14)

To evaluate the coefficients a
δj

k , we compute the partial derivatives of L(un) with
respect to all coefficients on all scales and equal them to zero:

∂L(un)

∂bδk
l

∣∣∣bδ1
=aδ1

,...,bδi
=aδi

for k = 1, . . . , i; l = 1, . . . , sk, (15)

where aδj
=

(
a

δj

1 , . . . , a
δj
sj

)T

and bδj
=

(
b
δj

1 , . . . , b
δj
sj

)T

for j = 1, . . . , i. The partial

derivatives of L(un) with respect to coefficients bδk
can be computed as follows

∂
(
ũ

δj
n , ũδk

n

)
A

∂bδk
1 . . . ∂bδk

sk

= RL
Aδjδk

aδj
for j 6= k, (16)

where the symbol on the left-hand side stands for the vector of partial derivatives
with respect to bδk

1 , . . . , bδk
sk

and RL
Aδjδk

denotes the modified lower triangular matrix

of Ritz system:

RL
Aδjδk

=




(
ϕ

δj

1 , ϕδk
1

)
A

0 · · · 0

2
(
ϕ

δj

1 , ϕδk
2

)
A

(
ϕ

δj

2 , ϕδk
2

)
A

· · · 0

...
...

. . .
...

2
(
ϕ

δj

1 , ϕδk
sk

)
A

2
(
ϕ

δj

2 , ϕδk
sk

)
A

· · ·
(
ϕ

δj
sj , ϕ

δk
sk

)
A




. (17)

Similarly, partial derivatives of the first part of equation (10) with respect to
coefficients bδj

can be computed as

∂
(
ũ

δj
n , ũδk

n

)
A

∂b
δj

1 . . . ∂b
δj
sj

= RU
Aδjδk

aδk
for j 6= k, (18)

where RU
Aδjδk

is modified upper triangular matrix of Ritz system:

RU
Aδjδk

=




(
ϕ

δj

1 , ϕδk
1

)
A

2
(
ϕ

δj

1 , ϕδk
2

)
A

· · · 2
(
ϕ

δj

1 , ϕδk
sk

)
A

0
(
ϕ

δj

2 , ϕδk
2

)
A

· · · 2
(
ϕ

δj

2 , ϕδk
sk

)
A

...
...

. . .
...

0 0 · · ·
(
ϕ

δj
sj , ϕ

δk
sk

)
A




. (19)
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Finally, partial derivatives of the first part of equation (10) with respect to coef-
ficients bδj

on the same scale δj are given by:

∂
(
ũ

δj
n , ũ

δj
n

)
A

∂b
δj

1 . . . ∂b
δj
sj

= RAδjδj
aδj

, (20)

where RAδjδj
is the well known matrix of the Ritz system:

RAδjδj
= 2




(
ϕ

δj

1 , ϕ
δj

1

)
A

(
ϕ

δj

1 , ϕ
δj

2

)
A

· · ·
(
ϕ

δj

1 , ϕ
δj
sk

)
A(

ϕ
δj

1 , ϕ
δj

2

)
A

(
ϕ

δj

2 , ϕ
δj

2

)
A

· · ·
(
ϕ

δj

2 , ϕ
δj
sj

)
A

...
...

. . .
...(

ϕ
δj

1 , ϕ
δj
sj

)
A

(
ϕ

δj

2 , ϕ
δj
sj

)
A

· · ·
(
ϕ

δj
sj , ϕ

δj
sj

)
A




. (21)

3. Results and discussion

The main result of this work is the minimization of the quadratic functional
with respect to the mentioned subspace division using the common Ritz system and
triangular matrices of the Ritz system. Detail reordering of individual equations
is beyond the scope of this contribution and also huge and inappropriate for the
proceedings. For this reason, just final results are introduced. Using the above
mentioned relations, the partial derivatives (15) can be expressed in the following
form

∂L(un)

∂bδ1
1 . . . ∂bδ1

s1

= RAδ1δ1
aδ1 + 2RU

Aδ1δ2
aδ2 + . . . + 2RU

Aδ1δi
,

∂L(un)

∂bδ2
1 . . . ∂bδ2

s2

= 2RL
Aδ1δ2

aδ1 + RAδ2δ2
aδ2 + 2RU

Aδ2δ3
aδ3 + . . . + 2RU

Aδ2δi
aδi

,

∂L(un)

∂bδ3
1 . . . ∂bδ3

s3

= 2RL
Aδ1δ3

aδ1 + 2RL
Aδ2δ3

aδ2 + RAδ3δ3
aδ3 + 2RU

Aδ3δ4
aδ4 + . . .

. . . + 2RU
Aδ3δi

aδi
,

...

∂L(un)

∂bδi
1 . . . ∂bδi

si

= 2RL
Aδ1δi

aδ1 + 2RL
Aδ2δi

aδ2 + . . . + RAδiδi
aδi

. (22)

This complex system can be rewritten in more readable form (T means vector
transposition):

SA(un) = RAδjδj
aδj

+ 2
i∑

k=j+1

RU
Aδjδk

aδk
+ 2

j−1∑

k=1

RL
Aδkδj

aδk
, (23)
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where SA(un) =

(
∂L(un)

∂b
δj
1

, ∂L(un)

∂b
δj
2

, . . . , ∂L(un)

∂b
δj
sj

)T

. In this way, we obtained a numerical

approximation of the first part of equation (10).
Minimization of functional equation (10) is done by the relation:

∂L(un)

∂bδk
l

∣∣∣bδ1
=aδ1

,...,bδi
=aδi

= 0 for k = 1, . . . , i; l = 1, . . . , sk. (24)

Thus, the approximate solution un can be computed by evaluation of aδj
in the

following equation:

SA(un) =
((

f, ϕ
δj

1

)
,
(
f, ϕ

δj

2

)
, . . . ,

(
f, ϕδj

sj

))T

, (25)

where SA(un) is given by (23).
By analogy, the solution of equation (6) with applying of SA(un) derivation can

be rewritten in this form:

SA(un)− SB(un)− SC(un) = 2
((

fc, ϕ
δj

1

)
,
(
fc, ϕ

δj

2

)
, . . . ,

(
fc, ϕ

δj
sj

))T

, (26)

where we use the following differential operators

SA(u) = ρ
∂2

∂t2
u,

SB(u) =
(∇cEG + (w − wext)∇cKbw + (T − Text)∇cK

bT

)∇u,

SC(u) = ∇cλw,T
∇ ∂

∂t
u,

and fc = F− (Cw · w + Cw2 · w2 + CT · T + CT2 · T 2 + CwT · w · T + C) .
If finite elements with linear basis functions are used, then system equation (26)

is uniquely solvable. Solution is realized in i consequent steps. In the first step,
equation (26) is formed for j = 1. Since the results of higher scales are unknown (in
Ritz or modified Ritz system), the solution on higher scales in individual nodes is
expressed by value of aδ1 or other appropriate lower scales. From this step, we obtain
suitable extrapolation in some nodes on higher scale(s) which include the region of
element on this solved scale. In the next step, we calculate the same equation, but
on the following higher scale. At the same time, some nodes on this scale are strictly
derived from previous step. This idea is repeated until the highest scale is reached.

4. Conclusions

Advantage of this type of solution is the null requirement of results enumeration
on lower scales. Simultaneously, just results on last scale can be enumerated, whereas
results on the scale are derived from lower scales. The solution can be simplified by
this statement:
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If a position of a node for higher scale is in some region of a lower scale mesh,
then aδj−k

can be mapped directly to results on higher scale aδj
,
(
aδj−k

→ aδj

)
. Let

each node of element on some higher scale Eδj coincides with node in element on
lower scale Eδj−k . All contributions of higher scales aδj>1

to subgrid can be derived
from consequent mapping of aδ1 , aδ2 , . . . , aδj−1

to required aδj .

5. Summary

The weak solution of coupled stress-strain task with moisture/temperature de-
pendency of material model was obtained in this project. The subgrid upscaling
homogenization method for large scale hierarchical structure, which is typical for
wood structure, was used. Modified Ritz-Galerkin method for simple solution was
derived. The coefficient form of the PDE suitable for nowadays numerical solvers was
used ([5]). Suggested weak solution offers unique and relatively accurate solution of
large scale problems with dependency on low scale. The solution is very general and
slight modification of the approach allows solution of a lot of common tasks in the
field of bio-mechanics.
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INTERIOR POINT ALGORITHMS FOR 3D CONTACT PROBLEMS

Radek Kučera∗, Jitka Machalová, Pavel Ženčák

1. Introduction

We shall be concerned with solving

minimize 1
2
x>Ax− x>b,

subject to x1,i ≥ li, x2
2,i + x2

3,i ≤ g2
i , i = 1, . . . , m,

x = (x>1 , x>2 , x>3 )> ∈ Rn,

(1)

where |x1| = |x2| = |x3| = m, n = 3m, A ∈ Rn×n is the symmetric, positive definite
Hessian matrix, b ∈ Rn, and l, g ∈ Rm. This problem arises, e.g., in duality based
methods for the solution of 3D contact problems of linear elasticity with Tresca fric-
tion. As a widely used approach of contact problems with (more realistic) Coulomb
friction is based on a sequence of Tresca friction problems [2], an efficient solver
for (1) is of crucial importance. In this contribution we shall test algorithms based
on an “interior point” idea.

2. Description of algorithms

The solution to (1) exists and it is necessarily unique. We denote it by x∗. It
is well-known [1] that x∗ is fully determined by the Karush-Kuhn-Tucker (KKT)
conditions. The basic idea of interior point methods consists in applying Newton
iterations to equalities in the KKT conditions while inequalities are satisfied strictly
by damping Newton steps.

Let us introduce the Lagrangian L : Rn × R2m 7→ R associated with (1) by

L(x, λ, µ) =
1

2
x>Ax− x>b + λ>(l − x1) + µ>(X2

2 + X2
3 −G2)e,

where X2, X3, G ∈ Rm×m are defined by X2 = diag(x2), X3 = diag(x3), G = diag(g),
and e = (1, . . . , 1)> ∈ Rm. There is y∗ := (λ∗, s∗, µ∗, d∗) ∈ R4m so that the pair
(x∗, y∗) is the unique solution to the following system:

∂L
∂x

(x, λ, µ) = 0,
∂L
∂λ

(x, λ, µ) + s = 0, λ>s = 0,
∂L
∂µ

(x, λ, µ) + d = 0, µ>d = 0,

(2)

λ ≥ 0, s ≥ 0, µ ≥ 0, d ≥ 0. (3)

∗Supported by grants GAČR 101/08/0574, and MSM6198910027.
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Here, λ, and µ are the Lagrange multipliers while s, and d are the slack variables.
The classical KKT conditions can be derived from (2), (3) by eliminating the slack
variables.

Let us divide A, b into blocks Aij, bi, i, j ∈ {1, 2, 3} consistently with the partition
of x onto x1, x2, x3. We can equivalently rewrite (2), (3) as

F (x, y) = 0, y ≥ 0, (4)

where y := (λ>, s>, µ>, d>)>, and F : Rn+4m 7→ Rn+4m,

F (x, y) :=




A11x1 + A12x2 + A13x3 − λ− b1

A21x1 + (A22 + 2M)x2 + A23x3 − b2

A31x1 + A32x2 + (A33 + 2M)x3 − b3

−x1 + s + l
ΛSe
(X2

2 + X2
3 −G2)e + d

MDe




with Λ, S, M, D ∈ Rm×m, Λ = diag(λ), S = diag(s), M = diag(µ), D = diag(d).
The Jacobi matrix to F reads as follows:

J(x, y) =




A11 A12 A13 −I 0 0 0
A21 A22 + 2M A23 0 0 2X2 0
A31 A32 A33 + 2M 0 0 2X3 0
−I 0 0 0 I 0 0

0 0 0 S Λ 0 0
0 2X2 2X3 0 0 0 I
0 0 0 0 0 D M




. (5)

Let (x(k), y(k)), y(k) > 0 be a known approximation of (x∗, y∗). The Newton
direction is the solution to the linear system

J(x(k), y(k))

(
∆x(k+1)

∆y(k+1)

)
= −F (x(k), y(k)), (6)

and the new iterate is

(x(k+1), y(k+1)) = (x(k), y(k)) + α(k)(∆x(k+1), ∆y(k+1)), (7)

where α(k) = min
∆y

(k+1)
i <0

{1,−δy
(k)
i /∆y

(k+1)
i } with δ ∈ (0, 1] providing y(k+1) > 0

(typically δ = 0.999).
The computations based on (6), (7) can take short steps before violating y(k+1) >0

so that the convergence rate can be slow. Therefore we use two modifications [7]
called path following method, and (Mehrotra’s) predictor-corrector method keeping
iterates deeper in the feasible region so that it enables us to perform longer steps.
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Let us replace (4) by

F (x, y) = (0>, 0>, 0>, 0>, τe>, 0>, τe>)>, y > 0, (8)

where τ > 0. Solutions (xτ , yτ ) to (8) define in Rn×R4m
+ a curve C(τ) called central

path that leads to (x∗, y∗) as τ tends to zero. The next algorithm combines Newton
iterations for the equation in (8) with changes of τ so that the (modified) Newton
steps follow C(τ).

Algorithm PF: Given x(0) ∈ Rn, y(0) ∈ R4m
+ , σl, σq, δ ∈ [0, 1], and ε ≥ 0. Set

k := 0.

(1) Compute β
(k)
l = λ(k)>s(k)/m, β(k)

q = µ(k)>d(k)/m, and τ
(k)
l = σlβ

(k)
l , τ (k)

q = σqβ
(k)
q .

Solve

J(x(k), y(k))

(
∆x(k+1)

∆y(k+1)

)
= −F (x(k), y(k)) + (0>, 0>, 0>, 0>, τ

(k)
l e>, 0>, τ (k)

q e>)> (9)

and generate (x(k+1), y(k+1)) by (7).

(2) If ‖(∆x(k+1), ∆y(k+1))‖Rn+4m ≤ ε, return (x̄, ȳ) = (x(k+1), y(k+1)), else set k :=
k + 1, and go to step (1).

The parameters β
(k)
l , β(k)

q , and σl, σq are called duality measures, and centering
parameters, respectively. Let us note that σl = σq = 0 reduces Algorithm PF to
the standard (damped) Newton method. Our choices of σl, and σq are based on the
rule proposed in [4]:

σl = (min{2 · 10−3, 5 · 10−5(1− ξl)/ξl})3,

where ξl = mini=1,...,m{λ(k)
i s

(k)
i }/β(k)

l , and analogously for σq.

The second algorithm calculates centering parameters adaptively using second
order information (curvature) of the central path C(τ). First, in the predictor stage,
we compute duality measures βP

l , βP
q for the longest step of the (standard) Newton

direction. Then, in the corrector stage, we set σl, σq near 0, when the good progress
along the predicted direction is made or near 1 conversely.

Algorithm PC: Given x(0) ∈ Rn, y(0) ∈ R4m
+ , δ ∈ (0, 1), and ε ≥ 0. Set k := 0.

(1) Solve
J(x(k), y(k))

(
∆xP

∆yP

)
= −F (x(k), y(k)),

compute αP = min∆yP
i <0{1,−y

(k)
i /∆yP

i }, and

βP
l = (λ(k) + αP ∆λP )>(s(k) + αP ∆sP )/m,

βP
q = (µ(k) + αP ∆µP )>(d(k) + αP ∆dP )/m.
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(2) Set σl =
(
βP

l /β
(k)
l

)3
, σq =

(
βP

q /β(k)
q

)3
, compute (∆x(k+1), ∆y(k+1)) solving (9)

with the right-hand-side replaced by

−F (x(k), y(k))+(0>, 0>, 0>, 0>,−e>∆ΛP ∆SP +τ
(k)
l e>, 0>,−e>∆MP ∆DP e+τ (k)

q e>)>,

and generate (x(k+1), y(k+1)) by (7).

(3) If ‖(∆x(k+1), ∆y(k+1))‖Rn+4m≤ε, return (x̄, ȳ)=(x(k+1), y(k+1)), else set k := k+1,
and go to step (1).

3. Numerical experiments

3.1. Model problem

Let us consider a steel brick in R3 lying on a rigid foundation. The brick occupies
the domain Ω = (0, 3)× (0, 1)× (0, 1), whose boundary ∂Ω split into three nonempty
disjoint parts Γu = {0}×(0, 1)×(0, 1), Γc = (0, 3)×(0, 1)×{0}, and Γp = ∂Ω\(Γ̄u∪Γ̄c)
with different boundary conditions. The zero displacements are prescribed on Γu,
whereas the surface tractions act on Γp. On Γc we consider the contact conditions,
i.e., the non-penetration, and the effect of friction. The elastic behavior of the
brick is described by Lamé equations that, after finite element discretization, lead
to a symmetric positive definite stiffness matrix K ∈ R3nc×3nc and to a load vector
f ∈ R3nc . Moreover, we introduce full rank matrices N, T1, T2 ∈ Rm×3nc projecting
displacements at contact nodes to normal and tangential directions, respectively,

and we denote B =
(
N>, T>

1 , T>
2

)> ∈ R3m×3nc . For more details about this model

problem we refer to [2].

Here, we shall use the dual formulation in terms of contact stresses. Considering
only Tresca friction, our model problem reduces directly to (1), where A = BK−1B>,
b = BK−1f , l = 0, and gi ≥ 0 are given slip bound values at contact nodes. Let
us note that unknowns x1, and x2, x3 represent the normal, and tangential contact
stresses, respectively.

3.2. Inner solver

Our algorithms require repeatedly to solve the linear systems

J(x, y)

(
∆x
∆y

)
=

(
rx

ry

)
(10)

with the Jacobi matrix given by (5), and rx ∈ Rn, ry = (r>λ , r>s , r>µ , r>d )> ∈ R4m,
∆y = (∆λ>, ∆s>, ∆µ>, ∆d>)> ∈ R4m. First we compute the solution to the reduced
system arising from (10) by eliminating increments with respect to the slack variables:

JR(x, y)

(
∆x
∆z

)
=

(
rx

rz

)
, (11)
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where

JR(x, y) =




A11 A12 A13 −I 0
A21 A22 + 2M A23 0 2X2

A31 A32 A33 + 2M 0 2X3

−I 0 0 −Λ−1S 0
0 2X2 2X3 0 −M−1D




,

and rz = (r>λ − r>s Λ−1, r>µ − r>d M−1)> ∈ R2m, ∆z = (∆λ>, ∆µ>)> ∈ R2m. Then we
obtain the eliminated components by ∆s = Λ−1(rs − S∆λ), and ∆d = M−1(rd −
D∆µ). It is easy to prove that the Schur complement with respect to the second
diagonal block in JR(x, y) is positive definite provided y > 0. Therefore JR(x, y) is
non-singular but indefinite. In order to solve (11), one can use direct [6] or iterative
methods. In this paper we apply the conjugate gradient method with an appropriate
indefinite preconditioning [5].

3.3. Tests

We compare the algorithms PF, and PC with the one presented in [3], here
denoted by QPC. For various numbers of the primal, and dual degrees of freedoms
(3nc/3m), we report the computational time (time), the total number of the matrix-
vector multiplications (nA), and, in case of the interior point algorithms, the number
of the outer iterations (out), and the number of the full steps (full), i.e. the steps
with α(k) = 1. All computations are performed by Matlab 7 on Pentium 4, 2.8 GHz
with 1GB RAM.

The first experiments in Table 1 demonstrate the computational strategy in which
the Hessian matrix A is assembled (only in PF, and PC). As the time consumed
by assembling A predominates for larger 3nc/3m, this strategy seems to be non-
acceptable form more realistic contact problems.

In Tables 2, and 3 we present the computational efficiency of PF, and PC with
non-assembled A. We test two preconditioners of indefinite type for (10). The com-
putation of Hessian matrix is based on an approximation of a Schur complement

QPC PF PC
3nc/3m time nA time timeA time timeA

162/54 0.29 203 0.07 0.03 (45%) 0.12 0.03 (26%)
900/180 2.08 311 0.68 0.34 (50%) 1.07 0.34 (31%)

2646/378 12.91 347 5.85 3.46 (59%) 7.00 3.26 (47%)
5832/648 53.4 384 27.1 18.1 (67%) 27.0 15.8 (59%)

10890/990 126.2 408 79.7 58.5 (73%) 90.0 60.5 (67%)
18252/1404 361.9 493 246.2 192.5 (78%) 274.0 184 (67%)
28350/1890 809.4 478 620.5 493.0 (79%) 677.6 493.5 (73%)

Tab. 1: A is assembled in PF, and PC (timeA is consumed by assembling A).
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QPC PF, precond. 1 PC, precond. 1
3nc/3m time nA time nA out full time nA out full

162/54 0.29 203 0.25 97 19 11 0.30 195 27 16
900/180 2.08 311 0.94 112 20 12 1.20 154 17 11

2646/378 12.91 347 6.69 139 22 13 6.33 147 13 8
5832/648 53.4 384 29.33 173 25 13 23.8 157 13 7

10890/990 126.2 408 109.5 233 30 13 68.3 159 13 6
18252/1404 361.9 493 265.3 244 31 12 177.7 183 14 7
28350/1890 809.4 478 644.2 282 36 13 420.9 209 16 7

Tab. 2: A is not assembled, the preconditioner 1 is assembled.

QPC PF, precond. 2 PC, precond. 2
3nc/3m time nA time nA out full time nA out full

162/54 0.29 203 0.28 154 27 12 0.23 148 16 12
900/180 2.08 311 0.98 112 20 14 1.05 138 13 8

2646/378 12.91 347 6.61 133 22 13 5.5 122 12 8
5832/648 53.4 384 26.6 150 24 13 22.6 145 13 8

10890/990 126.2 408 105.4 218 30 13 66.4 151 13 7
18252/1404 361.9 493 253.2 224 31 13 169.8 169 14 7
28350/1890 809.4 478 584.7 251 33 12 397.1 190 15 7

Tab. 3: A is not assembled, the preconditioner 2 is assembled.

to the stiffness matrix K. While the first preconditioner uses diagonal scaling, the
second one requires more expensive computations. Let us note that both precondi-
tioners are assembled.

4. Conclusions

In the contribution we present our first experience with solving contact problems
by the interior point algorithms. As the results seem promising many questions are
still open, namely the convergence proof of both algorithms. The future work consists
also of applying non-assembled preconditioners, and of implementing theoretically
supported inner solvers.
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THE NUMERICAL SOLUTION OF COMPRESSIBLE FLOWS
IN TIME DEPENDENT DOMAINS∗

Václav Kučera, Jan Česenek

Abstract

This work is concerned with the numerical solution of inviscid compressible fluid
flow in moving domains. Specifically, we assume that the boundary part of the domain
(impermeable walls) are time dependent. We consider the Euler equations, which
describe the movement of inviscid compressible fluids. We present two formulations
of the Euler equations in the ALE (Arbitrary Lagrangian-Eulerian) form. These
two formulations are discretized in space by the discontinuous Galerkin method. We
apply a semi-implicit linearization with respect to time to obtain a numerical scheme
requiring the solution of only one linear system on each time level. We apply the
method to the compressible flow around a moving (vibrating) profile.

1. Continuous problem

In this paper we shall be concerned with two-dimensional inviscid compressible
flow in a bounded domain Ωt ⊂ R2 depending on time t ∈ [0, T ]. We assume that
the boundary of Ωt consists of three disjoint parts ΓI , ΓO, ΓWt : ∂Ωt = ΓI ∪ΓO ∪ΓWt ,
where ΓI and ΓO represent the time-independent inlet and outlet, respectively, and
ΓWt represents moving impermeable walls.

As the governing equations we take the Euler equations written in the conserva-
tive form

∂w

∂t
+

2∑
s=1

∂f s(w)

∂xs

= 0 in Ωt, t ∈ (0, T ), (1)

where
w = (w1, . . . , w4)

T

= (ρ, ρv1, ρv2, E)
T

is the so-called state vector and

f s(w) = (ρvs, ρvsv1 + δs1p, ρvsv2 + δs2p, (E + p) vs)
T

are the Euler inviscid fluxes of the quantity w in the directions xs, s = 1, 2. We
use the following notation: ρ - density, p - pressure, E - total energy, v = (v1, v2)
- velocity vector, γ > 1 - Poisson adiabatic constant (we take γ = 1.4 for air),
a =

√
γp/ρ - local speed of sound.

∗This work is a part of the research project No. MSM 0021620839 of the Ministry of Education
of the Czech Republic. The research was also partly supported by the Grant No. 201/08/0012 of
the Czech Grant Agency.
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System (1) is completed by the thermodynamical relation arising from the equa-
tion of state

p = (γ − 1)(E − ρ |v|2 /2),

furthermore by the initial condition

w(x, 0) = w0(x), x ∈ Ω, (2)

and boundary conditions, which are treated in Section 4

As in [6] we define the flux of the quantity w in the direction n = (n1, n2) ∈ R2,
n2

1 + n2
2 = 1, by

F (w, n) =
2∑

s=1

f s(w)ns

and its Jacobi matrix

P(w,n) =
DF (w,n)

Dw
=

2∑
s=1

As(w)ns, (3)

where

As(w) =
Df s(w)

Dw
, s = 1, 2,

are the Jacobi matrices of the mappings f s. It is possible to show that f s, s = 1, 2,
are homogeneous mappings of order one, which implies that

f s(w) = As(w)w, s = 1, 2, (4)

and

F (w,n) = P(w,n)w. (5)

The matrix P is diagonalizable, i.e.

P = TΛT−1, (6)

where T = T(w, n) is a nonsingular matrix and

Λ = diag(λ1, . . . , λ4) (7)

is the diagonal matrix with entries

λ1 = v · n− a, λ2 = λ3 = v · n, λ4 = v · n + a, (8)

which are the eigenvalues of the matrix P. (See, e.g. [6], Section 3.1.5.)
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2. ALE formulation

In order to treat the time dependance of the domain, we use the so-called arbitrary
Lagrangian-Eulerian ALE technique. We define a reference domain Ω0 and regular
one-to-one ALE mapping of Ω0 onto Ωt (cf. [8], [9] and [10])

At : Ω0 −→ Ωt, i.e. X ∈ Ω0 7−→ x = x(X, t) = At(X) ∈ Ωt.

Here we use the notation X for points in Ω0 and x for points in Ωt.
Further, we define the ALE velocity:

z̃(X, t) =
∂

∂t
At(X), t ∈ [0, T ], X ∈ Ω0,

z(x, t) = z̃(A−1(x), t), t ∈ [0, T ], x ∈ Ωt,

and the ALE derivative of a function f = f(x, t) defined for x ∈ Ωt and t ∈ [0, T ]:

DA

Dt
f(x, t) =

∂f̃

∂t
(X, t), (9)

where
f̃(X, t) = f(At(X), t), X ∈ Ω0, x = At(X).

The following relations are a direct consequence of the chain rule:

DAf

Dt
=

∂f

∂t
+ z · ∇f =

∂f

∂t
+ div (zf)− f div z.

This leads to two different formulations of the Euler equations in ALE form.
Formulation 1:

DAw

Dt
+

2∑
s=1

∂f s(w)

∂xs

− z · ∇w = 0. (10)

Formulation 2:
DAw

Dt
+

2∑
s=1

∂gs(w)

∂xs

+ w divz = 0, (11)

where gs, s = 1, 2, are modified inviscid fluxes

gs(w) := f s(w)− zsw.

3. Discretization of the problem in the time dependent domain

In this section, we shall describe the discretization of the initial-boundary value
problem for the Euler equations written in the ALE forms (10) and (11). In the pre-
sented work we shall use the discontinuous Galerkin finite element method (DGFEM)
for space semi-discretization. For an overview of various applications of the discon-
tinuous Galerkin methods cf. [2].
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3.1. Notation

In what follows we shall assume that Ωt is a polygonal domain for all t. Let Tht

be a partition of the closure Ωt into a finite number of closed triangles with mutually
disjoint interiors. We shall call Tht a triangulation of Ωt. We do not require the
standard conforming properties of Tht used in the finite element method. This means
that we admit the so-called hanging nodes. We shall use the following notation.
By ∂K we denote the boundary of an element K ∈ Tht and set hK = diam(K),
h = maxK∈Tht

hK . By ρK we denote the radius of the largest circle inscribed into K
and by |K| we denote the area of K.

Let K,K ′ ∈ Tht. We say that K and K ′ are neighbours, if the set ∂K ∩ ∂K ′ has
positive length. We say that Γ ⊂ K is a face of K, if it is a maximal connected open
subset either of ∂K ∩ ∂K ′, where K ′ is a neighbour of K, or of ∂K ∩ ∂Ωt. By Fht

we denote the system of all faces of all elements K ∈ Tht. Further, we define the set
of all inner faces by

F I
ht = {Γ ∈ Fht; Γ ⊂ Ωt}

and the set of all boundary faces by

FB
ht = {Γ ∈ Fht; Γ ⊂ ∂Ωt} .

Obviously, Fht = F I
ht ∪ FB

ht.

For each Γ ∈ Fht we define a unit normal vector nΓ. We assume that for Γ ∈ FB
ht

the normal nΓ has the same orientation as the outer normal to ∂Ω. For each face
Γ ∈ F I

ht the orientation of nΓ is arbitrary but fixed cf. Figure 1. Finally, by d(Γ) we
denote the length of Γ ∈ Fht.

K1

K2

K3

K4

K5

Γ1

Γ2

Γ3Γ4

Γ5

Γ6

Γ7

Γ8

~nΓ1

~nΓ2

~nΓ3

~nΓ4

~nΓ5

~nΓ6

~nΓ7

~nΓ8

Fig. 1: Typical DG triangulation with possible hanging nodes.
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3.2. Spaces of discontinuous functions

For each face Γ ∈ F I
ht there exist two neighbours K

(L)
Γ , K

(R)
Γ ∈ Tht such that

Γ ⊂ K
(L)
Γ ∩K

(R)
Γ . We use the convention that nΓ is the outer normal to the element

K
(L)
Γ and the inner normal to the element K

(R)
Γ , see Figure 2. Let p ≥ 1 be an integer.

The approximate solution will be sought in the space of discontinuous piecewise
polynomial functions

Sht = {v; v|K ∈ P p(K),∀K ∈ Tht}4,

where P p(K) denotes the space of all polynomials on K of degree ≤ p. For v ∈ Sht

and Γ ∈ F I
ht we introduce the following notation:

v|(L)
Γ = the trace of v|

K
(L)
Γ

on Γ, v|(R)
Γ = the trace of v|

K
(R)
Γ

on Γ,

〈v〉Γ = 1
2

(
v|(L)

Γ + v|(R)
Γ

)
, [v]Γ = v|(L)

Γ − v|(R)
Γ .

Now, let Γ ∈ FB
ht and K

(L)
Γ ∈ Tht be such an element that Γ ⊂ ∂K

(L)
Γ ∩ ∂Ωt. For

v ∈ Sht we set

vΓ = v|(L)
Γ = v|(R)

Γ = the trace of v|
K

(L)
Γ

on Γ,

i.e. we define v|(R)
Γ by extrapolation.

If [·]Γ and 〈·〉Γ appear in an integral of the form
∫
Γ
. . . dS, we omit the subscript

Γ and write simply [·] and 〈·〉.

3.3. Space semidiscretization

3.3.1. Formulation 1

In order to derive the discrete problem, we assume that w is a sufficiently regular
solution of system (10), multiply (10) by a test function ϕ ∈ Sht, integrate over any
element K apply Green’s theorem and sum over all K ∈ Tht. We get the relation

∑
K∈Tht

∫

K

DAw(t)

Dt
·ϕ dx =

∑
K∈Tht

∫

K

2∑
s=1

f s(w(t)) · ∂ϕ

∂xs

dx

−
∑

Γ∈Fht

∫

Γ

2∑
s=1

f s(w(t))ns · [ϕ] dS −
∑

K∈Tht

∫

K

2∑
s=1

zs
∂w

∂xs

·ϕ dx.

Now the exact solution w(t) is approximated by an element wh(t) ∈ Sht and the
fluxes through the faces Γ are approximated as in the finite volume method with the
aid of a numerical flux Hf = Hf (u,w,n). It means that on edge Γ

2∑
s=1

f s(w(t))ns ≈ Hf (wh|(L)
Γ (t),wh|(R)

Γ (t),n).
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In this work we take Hf as the Vijayasundaram numerical flux consistent with the
fluxes f s, s = 1, 2, cf. [11]. Taking into account (3) we define the “positive” and
“negative” parts of the matrix P as

P± = TΛ±T−1,

where
Λ± = diag(λ±1 , . . . , λ±4 ),

and λ+ = max(λ, 0), λ− = min(λ, 0). Using the above concepts, we introduce the
Vijayasundaram numerical flux

Hf (w
(L),w(R), n) = P+ (〈w〉, n) w(L) + P− (〈w〉,n) w(R).

Finally we can define the discrete forms defining the discrete form of formulation 1:

(
DAwh

Dt
, ϕh

)

ht

=

∫

Ωht

DAwh

Dt
·ϕh dx,

b̃
(1)
h (wh, ϕh) = −

∑
K∈Tht

∫

K

2∑
s=1

f s(wh) · ∂ϕ

∂xs

dx

+
∑

Γ∈Fht

∫

Γ

Hf (wh|(L)
Γ , wh|(R)

Γ ,nij) · [ϕh] dS,

d
(1)
h (wh, ϕh) = −

∑
K∈Tht

∫

K

2∑
s=1

zs
∂w

∂xs

·ϕ dx.

3.3.2. Formulation 2

We proceed similarly as in the preceding section. We multiply (11) by a test
function ϕ ∈ Sht, integrate over any element K, apply Green’s theorem and sum
over all K ∈ Tht. We get the relation

∑
K∈Tht

∫

K

DAw(t)

Dt
·ϕ dx =

∑
K∈Tht

∫

K

2∑
s=1

gs(w(t)) · ∂ϕ

∂xs

dx

−
∑

Γ∈Fht

∫

Γ

2∑
s=1

gs(w(t))ns · [ϕ] dS −
∑

K∈Tht

∫

K

divz (w ·ϕ) dx.

Now the exact solution w(t) is approximated by an element wh(t) ∈ Sht and the
fluxes through the faces Γ are approximated with the aid of a numerical flux Hg =
Hg(u,w,n). It means that on edge Γ

2∑
s=1

gs(w(t))ns ≈ Hg(wh|(L)
Γ (t),wh|(R)

Γ (t), n). (12)
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Here Hg is an analogy to the Vijayasundaram numerical flux consistent with the
fluxes gs, s = 1, 2. We have

Dgs(w)

Dw
=

Df s(w)

Dw
− zsI = As − zsI

and can write

P̃(w,n) =
2∑

s=1

Dgs(w)

Dw
ns =

2∑
s=1

(Asns − zsnsI) = P(w,n)− (z · n)I.

This, (6), (7) and (8) imply that

P̃ = TΛ̃T−1, Λ̃ = diag(λ̃1, . . . , λ̃4), λ̃i = λi − z · n, i = 1, . . . , 4.

Now we define the “positive” and “negative” parts of the matrix P̃ as

P̃± = TΛ̃±T−1

and we introduce the modification of the Vijayasundaram numerical flux

Hg(w
(L),w(R),n) = P̃+ (〈w〉,n) w(L) + P̃− (〈w〉,n) w(R).

Finally we can define the discrete forms of formulation 2:

b̃
(2)
h (wh,ϕh) = −

∑
K∈Tht

∫

K

2∑
s=1

gs(wh) · ∂ϕ

∂xs

dx

+
∑

Γ∈Fht

∫

Γ

Hg(wh|(L)
Γ ,wh|(R)

Γ ,nij) · [ϕh] dS,

d
(2)
h (wh,ϕh) = −

∑
K∈Tht

∫

K

divz (wh ·ϕ) dx.

Finally we define an approximate solution of (10) and (11), respectively, as a func-
tion wh = wh(t) satisfying the conditions

(a) wh(t) ∈ Sht, ∀t ∈ [0, T ] ,

(b)

(
DAwh(t)

Dt
,ϕh

)

h

+ b̃h(wh(t),ϕh)− dh (wh(t), ϕh) = 0, (13)

∀ϕh ∈ Sht, ∀t ∈ (0, T ),

(c) wh(0) = Πhw
0,

where Πhw
0 is the L2(Ω0)-projection of w0 from the initial condition (2) on the space

Sh0. Relation (13) represents a discrete formulation of (10) and (11), when setting

b̃h := b̃
(1)
h , dh := d

(1)
h and b̃h := b̃

(2)
h , dh := d

(2)
h , respectively.
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3.4. Time discretization

In this section we shall introduce the time discretization of problem (13). Due
to the similarity of the two formulations we treat here only the second formulation.
The discrete problem (13) is equivalent to a large system of ordinary differential
equations. In order to avoid a CFL-stability condition we apply a semi-implicit
scheme, which is a generalization of the techniques proposed in [4] and [7].

We introduce the partition 0 = t0 < t1 < . . . of the time interval [0, T ] and
set τj = tj+1 − tj. The function wh(·, tj) will be approximated by wj, defined in
Ωtj . Let us assume that the approximate solution wj

h has already been computed
for j = 0, . . . , k. We are interested in the computation of the approximate solution
wk+1

h at time instant tk+1. If we set

ŵj
h(x) = wj

(
Atj

(
A−1

tk+1

)
(x)

)
, x ∈ Ωhtk+1

,

then, on the basis of (9), we can approximate the ALE derivative using the first order
backward difference:

(
DAwh(x, t)

Dt
, ϕh

)∣∣∣∣
tk+1

≈
(

wk+1(x)− ŵk
h(x)

τk

,ϕh

)
, x ∈ Ωhtk+1

.

Further, on the basis of (4), (5) and the definition of the modified Vijayasundaram

numerical flux we define a partial linearization b
(2)
h of the form b̃

(2)
h :

b
(2)
h (ŵk

h,w
k+1
h ,ϕh) = −

∑
K∈Tht+1

∫

K

2∑
s=1

(As(ŵ
k)− zs)I)wk+1) · ∂ϕh

∂xs

dx (14)

+
∑

Γ∈Fht+1

∫

Γ

[
P̃+

(〈ŵk
h〉, nij

)
wk+1

h |Γij
+ P̃−

(〈ŵk
h〉,nij

)
wk+1

h |Γji

]
·ϕh dS.

The term d
(2)
h linear with respect to wh will be treated implicitly.

These considerations lead us to the following semi-implicit scheme: For k =
0, 1, . . . find wk+1

h such that

(a) wk+1
h ∈ Shtk+1

,

(b)

(
wk+1

h − ŵk
h

τk

,ϕh

)
+ b

(2)
h (ŵk

h, w
k+1
h , ϕh)− d

(2)
h

(
wk+1

h , ϕh

)
= 0,

∀ϕh ∈ Shtk+1
,

(c) w0
h = Πhw

0.

This relation represents a system of linear algebraic equations on each time level
which is solved either iteratively using the block-Jacobi preconditioned GMRES or
a direct method (e.g. the direct unsymmetric multifrontal solver UMFPACK cf. [3]).
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4. Boundary conditions

If Γ ⊂ ∂Ωht, it is necessary to specify the boundary state w|(R)
Γ appearing in the

numerical flux H in the definition of the inviscid form bh.
On the inlet and outlet, which are fixed, we proceed in the same way as in [7],

Section 4, where we prescribe the state w|(R)
Γ in such a way that the locally linearized

Euler equations are well posed. On the impermeable moving wall we prescribe the
normal component of the velocity

v · n = z · n, (15)

where n is unit outer normal to ΓWt and z is the wall velocity. This is done by
prescribing the numerical flux H on ΓWt . Again we shall treat only formulation 2.
We define the numerical flux as the physical flux through the boundary with the
assumption (15) taken into account. We write:

2∑
s=1

gs(w)ns = (v · n− z · n)w + p (0, n1, n2,v · n)T = p (0, n1, n2,v · n)T =: Hg

on ΓWt . We proceed similarly in formulation 1.

5. Limiting procedure at discontinuities

For high speed flows with shock waves and contact discontinuities it is necessary to
avoid the Gibbs phenomenon manifested by spurious overshoots and undershoots in
computed quantities near discontinuities. In order to avoid the Gibbs phenomenon,
we apply the limiting procedure from [7] based on the discontinuity indicator

gk(K) =

∫

∂K

[ρ̂k
h]

2 dS/(hK |K|3/4), K ∈ Thtk+1
,

introduced in [5]. The density ρ̂k
h represents the first component of the state vec-

tor ŵk
h. Then we define the discrete discontinuity indicator

Gk(K) =

{
0 if gk(K) < 1,

1 if gk(K) ≥ 1,

and the artificial viscosity forms

βh(ŵ
k
h, w

k+1
h ,ϕh) = ν1

∑
K∈Tht

hKGk(K)

∫

K

∇wk+1
h · ∇ϕh dx,

and

Jh(ŵ
k
h, w

k+1
h , ϕh) = ν2

∑
Γ∈Fht

1

2

(
Gk(K) + Gk(K)

) ∫

Γ

[wk+1
h ] · [ϕh] dS,
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Fig. 2: Density isolines for the periodically oscillating NACA0012 profile.

with ν1, ν2 = O(1). Then the resulting scheme obtained by limiting of (14), (b) has
the form

(a) wk+1
h ∈ Shtk+1

,

(b)

(
wk+1

h − ŵk
h

τk

, ϕh

)

h

+ bh(ŵ
k
h,w

k+1
h , ϕh) + βh(ŵ

k
h, w

k+1
h , ϕh)

+Jh(ŵ
k
h,w

k+1
h , ϕh) = 0, ∀ϕh ∈ Shtk+1

, k = 0, 1, . . . ,

(c) w0
h = Πhw

0.

Remark. In practical computations, the integrals appearing in the definition of
the approximated solution are evaluated with the aid of quadrature formulae. In
order to obtain an accurate, physically admissible solution, it is necessary to use
isoparametric elements near curved boundaries (see [1] or [6], Section 4.6.8). In
our computations we proceed in such a way that a reference triangle is transformed
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by a bilinear mapping onto the approximation of a curved triangle adjacent to the
boundary ∂Ω.

6. Numerical experiments

We consider inviscid compressible flow around the NACA0012 profile, which is
periodically moving in the vertical direction with a periodically varying angle of
attack. Figure 2 shows density contours plotted at six time frames distributed over
one period of the flow. The presented plots represent a part of the computational
domain, which is chosen large in order to eliminate the role of artificial boundaries.

The ALE mapping is defined using two concentric circles with a center at the
center of gravity of the profile. Outside the outer circle the ALE mapping is chosen as
the identity mapping, i.e. no motion of the computational domain takes place. Inside
the inner circle the ALE mapping is defined so that the motion of the computational
domain coincides with the prescribed movement of the profile. In the space between
the two circles the movement of the ALE mapping is linearly interpolated to yield
a globally regular mapping.

In the solution we can observe the formation of vortices in the wake of the airfoil
due to the vibrating motion, which introduces vorticity into the fluid flow. These
vortices are then convected out of the computational domain. The Mach number at
infinity of the flow is M∞ = 0.1.
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ON LAGRANGE MULTIPLIERS OF TRUST-REGION
SUBPROBLEMS∗

Ladislav Lukšan, Ctirad Matonoha, Jan Vlček

1. Introduction

Consider the problem
min F (x), x ∈ Rn,

where F : Rn → R is a twice continuously differentiable objective function. Basic
optimization methods (trust-region and line-search methods) [6] generate points
xi ∈ Rn, i ∈ N , in such a way that x1 is arbitrary and

xi+1 = xi + αidi, i ∈ N ,

where di ∈ Rn are direction vectors and αi > 0 are step sizes.
Trust-region methods [1] are globally convergent techniques widely used, for ex-

ample, in connection with the Newton’s method for unconstrained optimization.
They can be advantageously used when the Hessian matrix (or its approximation) of
the objective function is indefinite, ill-conditioned or singular. This situation often
arises in connection with the Newton’s method for general objective function (indef-
initeness) or with the Gauss-Newton’s method for nonlinear least-squares problems
(near singularity).

For a description of trust-region methods we define the quadratic function

Qi(d) =
1

2
dT Bid + gT

i d

which locally approximates the difference F (xi + d)− F (xi), the vector

ωi(d) =
(Bid + gi)

‖gi‖
for the accuracy of computed direction, and the number

ρi(d) =
F (xi + d)− F (xi)

Qi(d)

∗This work was supported by the Grant Agency of the Czech Academy of Sciences, project
No. IAA1030405, the Grant Agency of the Czech Republic, project No. 201/06/P397, and the
institutional research plan No. AV0Z10300504.
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for the ratio of actual and predicted decrease of the objective function. Here gi =
g(xi) = ∇F (xi) and Bi ≈ ∇2F (xi) is an approximation of the Hessian matrix of the
function F at the point xi ∈ Rn.

Trust-region methods are based on approximate minimizations of Qi(d) on the
balls ‖d‖ ≤ ∆i followed by updates of radii ∆i > 0. Thus direction vectors di ∈ Rn

are chosen to satisfy the conditions

‖di‖ ≤ ∆i, (1)

‖di‖ < ∆i ⇒ ‖ωi(di)‖ ≤ ω, (2)

−Qi(di) ≥ σ‖gi‖min(‖di‖, ‖gi‖/‖Bi‖), (3)

where 0 ≤ ω < 1 and 0 < σ < 1. Step sizes αi ≥ 0 are selected so that

ρi(di) ≤ 0 ⇒ αi = 0, (4)

ρi(di) > 0 ⇒ αi = 1. (5)

Trust-region radii 0 < ∆i ≤ ∆ are chosen in such a way that 0 < ∆1 ≤ ∆ is arbitrary
and

ρi(di) < ρ ⇒ β‖di‖ ≤ ∆i+1 ≤ β‖di‖, (6)

ρi(di) ≥ ρ ⇒ ∆i ≤ ∆i+1 ≤ ∆, (7)

where 0 < β ≤ β < 1 and 0 < ρ < 1.

2. Direction determination

A crucial part of each trust-region method is the direction determination. There
are various commonly known methods for computing direction vectors satisfying
conditions (1)-(3). To simplify the notation, we omit the major index i and use the
inner index j.

The most sophisticated method is based on a computation of the optimal lo-
cally constrained step. In this case, the vector d ∈ Rn is obtained by solving the
subproblem

min Q(d) =
1

2
dT Bd + gT d subject to ‖d‖ ≤ ∆. (8)

Necessary and sufficient conditions for this solution are

‖d‖ ≤ ∆, (B + λI)d = −g, B + λI º 0, λ ≥ 0, λ(∆− ‖d‖) = 0,

where λ is the optimal Lagrange multiplier. The Moré-Sorensen method [5] is based
on solving the nonlinear equation 1/‖d(λ)‖ = 1/∆ with (B + λI)d(λ) + g = 0 by
the Newton’s method, possibly the modified Newton’s method [8] using the Choleski
decomposition of B + λI.

Steihaug [7] and Toint [9] proposed a technique for finding an approximate solu-
tion of (8). This implementation is based on the conjugate gradient algorithm [6] for
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solving the linear system Bd = −g. We either obtain an unconstrained solution with
a sufficient precision or stop on the trust-region boundary. The latter possibility oc-
curs if either a negative curvature is encountered or the constraint is violated. This
method is based on the fact that Q(dj+1) < Q(dj) and ‖dj+1‖ > ‖dj‖ hold in the
subsequent CG iterations if the CG coefficients are positive and no preconditioning
used. For a general preconditioner C (symmetric and positive definite), we have
‖dj+1‖C > ‖dj‖C , where ‖dj‖2

C = dT
j Cdj.

There are two possibilities how the Steihaug-Toint method can be preconditioned.
The first way uses the norms ‖di‖Ci

(instead of ‖di‖) in (1)–(7), where Ci are precon-
ditioners chosen. This possibility is not always efficient because the norms ‖di‖Ci

,
i ∈ N , vary considerably in the major iterations and preconditioners Ci, i ∈ N ,
can be ill-conditioned. The second way uses Euclidean norms in (1)–(7), even if
arbitrary preconditioners Ci, i ∈ N , are used. In this case, the trust-region can
be leaved prematurely and the direction vector obtained can be farther from the
optimal locally-constrained step than that obtained without preconditioning. This
shortcoming is usually compensated by the rapid convergence of the preconditioned
CG method. Our computational experiments indicate that the second way is more
efficient in general.

Another approach, the GLRT method [2], approximately solves (8) iteratively by
using the symmetric Lanczos process. A vector dj which is the j-th approximation
of optimal d is contained in the Krylov subspace Kj = span{g, Bg, . . . , Bj−1g} of
dimension j defined by the matrix B and the vector g. In this case, dj = Zd̃, where
d̃ is obtained by minimizing the quadratic function

1

2
d̃T T d̃ + ‖g‖eT

1 d̃

subject to ‖d̃‖ ≤ ∆. Here, T = ZT BZ (with ZT Z = I) is the Lanczos tridiagonal
matrix and e1 is the first column of the unit matrix. Using preconditioner C, the
preconditioned Lanczos method generates basis such that ZT CZ = I. Thus, we
have to use the norms ‖di‖Ci

in (1)–(7), i.e. the first way of preconditioning, which
can be inefficient when Ci vary considerably in the trust-region iterations or are
ill-conditioned.

3. A shifted Steihaug-Toint method

In this contribution, we consider a sequence of subproblems

dj = arg min
d∈Kj

Q(d) subject to ‖d‖ ≤ ∆, where Q(d) =
1

2
dT Bd + gT d,

with corresponding Lagrange multipliers λj, j ∈ {1, . . . , n}. The method [3] uses
the conjugate gradient method applied to the linear system (B+ λ̃I)d+g = 0, where
λ̃ is an approximation to the optimal Lagrange multiplier λ. For this reason, we
need to investigate the properties of the Lagrange multipliers corresponding to the
trust-region subproblems used.
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Before showing the main result, we first present several lemmas, which lead to
the main theorem. The first lemma, coming from [7], shows a simple property of
the conjugate gradient method, the second one compares Krylov subspaces of the
matrices B and B + λI, and the last one states a relation between the values of the
Lagrange multipliers and the norms of the direction vectors.

Lemma 1. Let B be a symmetric and positive definite matrix, let

Kj = span{g, Bg, . . . , Bj−1g}, j ∈ {1, . . . , n},
be the j-th Krylov subspace given by the matrix B and the vector g. Let

dj = arg min
d∈Kj

Q(d), where Q(d) =
1

2
dT Bd + gT d.

If 1 ≤ k ≤ l ≤ n, then
‖dk‖ ≤ ‖dl‖.

Especially,
‖dk‖ ≤ ‖dn‖, where dn = arg min

d∈Rn
Q(d).

Lemma 2. Let λ ∈ R and

Kj(λ) = span{g, (B + λI)g, . . . , (B + λI)j−1g}, j ∈ {1, . . . , n},
be the j-dimensional Krylov subspace generated by the matrix B+λI and the vector g.
Then

Kj(λ) = Kj(0).

Lemma 3. Let ZT
j BZj + λkI, λk ∈ R, k ∈ {1, 2}, where Zj ∈ Rn×j is a matrix

whose columns form an orthonormal basis for Kj, be symmetric and positive definite.
Let

dj(λk) = arg min
d∈Kj

Qλk
(d), where Qλ(d) =

1

2
dT (B + λI)d + gT d.

Then
λ2 ≤ λ1 ⇔ ‖dj(λ2)‖ ≥ ‖dj(λ1)‖.

Now we are in a position to present the main theorem.

Theorem 1. Let dj, j ∈ {1, . . . , n}, be solutions of the minimization problems

dj = arg min
d∈Kj

Q(d) subject to ‖d‖ ≤ ∆, where Q(d) =
1

2
dT Bd + gT d,

with corresponding Lagrange multipliers λj, j ∈ {1, . . . , n}. If 1 ≤ k ≤ l ≤ n, then

λk ≤ λl.
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4. Applications

The result of Theorem 1 can be applied to the following idea. We apply the
Steihaug-Toint method to a shifted subproblem

min Q̃(d) = Qλ̃(d) =
1

2
dT (B + λ̃I)d + gT d subject to ‖d‖ ≤ ∆, (9)

where λ̃ is an approximation to the optimal λ. If we set λ̃ = λj for some j ≤ n,
then Theorem 1 implies that 0 ≤ λ̃ = λj ≤ λn = λ. As a consequence of this
inequality, one has that λ = 0 implies λ̃ = 0 so that ‖d‖ < ∆ implies λ̃ = 0. Thus,
the shifted Steihaug-Toint method proposed in [3] reduces to the standard Steihaug-
Toint method in this case. At the same time, if B is positive definite and 0 < λ̃ ≤ λ,
then one has ∆ = ‖(B + λI)−1g‖ ≤ ‖(B + λ̃I)−1g‖ < ‖B−1g‖ by Lemma 3. Thus,
the unconstrained minimizer of (9) is closer to the trust-region boundary than the
unconstrained minimizer of (8) and we can expect that d(λ̃) is closer to the optimal
locally constrained step than d(0). Finally, if B is positive definite and λ̃ > 0, then
the matrix B + λ̃I is better conditioned than B and we can expect that the shifted
Steihaug-Toint method will converge more rapidly than the standard Steihaug-Toint
method.

The shifted Steihaug-Toint method for solving subproblem (8) consists of the
three major steps.

1. Carry out j ¿ n steps (usually j = 5) of the unpreconditioned Lanczos method
to obtain the tridiagonal matrix T ≡ Tj = ZT

j BZj.

2. Solve the subproblem

min
1

2
d̃T T d̃ + ‖g‖eT

1 d̃ subject to ‖d̃‖ ≤ ∆,

using the method of Moré and Sorensen, to obtain the Lagrange multiplier λ̃.

3. Apply the (preconditioned) Steihaug-Toint method to the shifted subproblem

min Q̃(d) subject to ‖d‖ ≤ ∆

to obtain the direction vector d = d(λ̃), a suitable approximation to the solution
of problem (8).

5. Numerical experiments

We present a numerical comparison of methods for computing direction vectors
satisfying conditions (1)-(3):

• MS – the method of Moré and Sorensen [5] for computing the optimal locally
constrained step.
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• ST – the basic (unpreconditioned) Steihaug [7] and Toint [9] method.

• SST – the basic (unpreconditioned) shifted Steihaug-Toint method [3].

• GLRT – the method of Gould, Lucidi, Roma, and Toint [2] which combines CG
method with the Lanczos process to give a good approximation to the optimal
locally constrained step.

• PST – the preconditioned Steihaug-Toint method.

• PSST – the preconditioned shifted Steihaug-Toint method.

Note that the incomplete Choleski preconditioner is used for methods PST and
PSST, the number of extra CG or Lanczos steps in SST and PSST methods is equal
to 5, and the number of Lanczos vectors in the GLRT method is bounded from above
by 100.

The methods were tested by using two collections of 22 sparse test problems with
1000 and 5000 variables (subroutines TEST14 and TEST15 described in [4], which can
be downloaded from www.cs.cas.cz/luksan/test.html). The results are given in
Tables 1 and 2, where NIT is the total number of iterations, NFV is the total number of
function evaluations, NFG is the total number of gradient evaluations, NDC is the total
number of Choleski-type decompositions (complete for method MS and incomplete
for methods PST, PSST), NMV is the total number of matrix-vector multiplications,
and Time is the total computational time in seconds. Note that NFG is much greater
than NFV in Table 1, since the Hessian matrices are computed by using gradient
differences. At the same time, the problems referred in Table 2 are the sums of
squares having the form F (x) = (1/2)fT (x)f(x) and NFV denotes the total number
of vector f(x) evaluations. Since f(x) is used in the expression g(x) = JT (x)f(x),
where J(x) is the Jacobian matrix of f(x), NFG is comparable with NFV in this case.

Results in Tables 1 and 2 require several comments. All problems are sparse
with a simple sparsity pattern. For this reason, the MS method based on complete
Choleski-type decompositions (CD) is very efficient, much better than unprecondi-
tioned methods based on matrix-vector multiplications (MV). Since TEST14 contains
reasonably conditioned problems, the preconditioned MV methods are competitive
with the CD method. On the contrary, TEST15 contains several very ill-conditioned
problems (one of them had to be removed) and thus, the CD method works better
than the MV methods.

6. Conclusion

Our conclusions concern large-scale problems where the sparsity pattern plays
a considerable role. The Moré-Sorensen method is very efficient for ill-conditioned
but reasonably sparse problems. If the problems do not have sufficiently sparse
Hessian matrices, then this method can be much worse than the Steihaug-Toint
method whose efficiency also strongly depends on suitable preconditioning. There
are two possibilities of preconditioning mentioned in Section 2. The first one changes
the trust-region problem whereas the second one deforms the trust-region path in the
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N Method NIT NFV NFG NDC NMV Time

1000 MS 1911 1952 8724 3331 1952 3.13
ST 3475 4021 17242 0 63016 5.44
SST 3149 3430 15607 0 75044 5.97
GLRT 3283 3688 16250 0 64166 5.40
PST 2608 2806 12802 2609 5608 3.30
PSST 2007 2077 9239 2055 14440 2.97

5000 MS 8177 8273 34781 13861 8272 49.02
ST 16933 19138 84434 0 376576 134.52
SST 14470 15875 70444 0 444142 146.34
GLRT 14917 16664 72972 0 377588 132.00
PST 11056 11786 53057 11057 23574 65.82
PSST 8320 8454 35629 8432 59100 45.57

Tab. 1: Comparison of methods using TEST14.

N Method NIT NFV NFG NDC NMV Time

1000 MS 1946 9094 9038 3669 2023 5.86
ST 2738 13374 13030 0 53717 11.11
SST 2676 13024 12755 0 69501 11.39
GLRT 2645 12831 12547 0 61232 11.30
PST 3277 16484 16118 3278 31234 11.69
PSST 2269 10791 10613 2446 37528 8.41

5000 MS 7915 33607 33495 14099 8047 89.69
ST 11827 54699 53400 0 307328 232.70
SST 11228 51497 50333 0 366599 231.94
GLRT 10897 49463 48508 0 300580 214.74
PST 9360 41524 41130 9361 179166 144.40
PSST 8634 37163 36881 8915 219801 140.44

Tab. 2: Comparison of methods using TEST15.

original trust-region problem. Note that the GLRT method cannot be preconditioned
in the second way since the preconditioned Lanczos process does not generate the
orthonormal basis related to the original trust-region subproblem. Our preliminary
tests have shown that the first preconditioning technique is less efficient because it
failed in many cases.

To sum up, the shifted Steihaug-Toint method combines good properties of the
Moré-Sorensen and the Steihaug-Toint methods. Our computational experiments
indicate that this method works well in connection with the second way of precondi-
tioning. The point on the trust-region boundary obtained by this method is usually
closer to the optimal solution in comparison with the point obtained by the original
Steihaug-Toint method.
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PRIMAL INTERIOR POINT METHOD FOR GENERALIZED
MINIMAX FUNCTIONS∗

Ladislav Lukšan, Ctirad Matonoha, Jan Vlček

Introduction

Generalized minimax optimization covers many practical problems, e.g., l1 and l∞
approximation or classic minimax optimization. In this contribution, we summarize
new results described in our previous works [1]–[4], which can be downloaded from
http://www.cs.cas.cz/luksan/reports.html. In these works, a connection with
the current research and additional references are shown.

Definition 1 We say that F (x) is a generalized minimax function if

F (x) = h(F1(x), . . . , Fm(x)), Fi(x) = max
1≤j≤ni

fij(x), 1 ≤ i ≤ m,

where h : Rm → R and fij : Rn → R, 1 ≤ i ≤ m, 1 ≤ j ≤ ni, are smooth functions
satisfying the following assumptions.

Assumption 1. Functions Fi(x), 1 ≤ i ≤ m, are bounded from below on Rn: there
are F i ∈ R such that Fi(x) ≥ F i, 1 ≤ i ≤ m, for all x ∈ Rn.

Assumption 2. Function h(z) is twice continuously differentiable and convex sat-
isfying

∂h(z)/∂zi ≥ hi > 0, 1 ≤ i ≤ m,

for every z ∈ Z = {z ∈ Rm : zi ≥ F i, 1 ≤ i ≤ m} (vector z ∈ Rm will be called the
minimax vector).

Assumption 3. Functions fij(x), 1 ≤ i ≤ m, 1 ≤ j ≤ ni, are twice continuously
differentiable on the convex hull of the level set

L(F ) = {x ∈ Rn : Fi(x) ≤ F, 1 ≤ i ≤ m}

for a sufficiently large upper bound F and they have bounded the first and second-
order derivatives on convL(F ): there are g and G such that ‖∇fij(x)‖ ≤ g and
‖∇2fij(x)‖ ≤ G for all 1 ≤ i ≤ m, 1 ≤ j ≤ ni and x ∈ convL(F ).

∗This work was supported by the Grant Agency of the Czech Academy of sciences, project
No. IAA1030405, the Grant Agency of the Czech Republic, project No. 201-06-P397, and the
institutional research plan No. AV0Z10300504.
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Unconstrained minimization of function F (x) is equivalent to the nonlinear pro-
gramming problem: Minimize the function

h(z1, . . . , zm)

with constraints
fij(x) ≤ zi, 1 ≤ i ≤ m, 1 ≤ j ≤ ni,

(conditions ∂h(z)/∂zi ≥ hi > 0, 1 ≤ i ≤ m, for z ∈ Z are sufficient for satisfying
equalities zi = Fi(x), 1 ≤ i ≤ m, at the minimum point). The necessary first-order
(KKT) conditions for a solution of this problem have the form

m∑

i=1

ni∑

j=1

uij∇fij(x) = 0,
ni∑

j=1

uij =
∂h(z)

∂zi

,

uij ≥ 0, zi − fij(x) ≥ 0, uij(zi − fij(x)) = 0, 1 ≤ j ≤ ni,

where uij, 1 ≤ i ≤ m, 1 ≤ j ≤ ni, are Lagrange multipliers.
Nonlinear programming problem can be solved by using the primal interior point

method. For this reason we apply the Newton minimization method to the sequence
of barrier functions

Bµ(x, z) = h(z) + µ
m∑

i=1

ni∑

j=1

ϕ(zi − fij(x)),

assuming 0 < µ ≤ µ and µ → 0, where ϕ : (0,∞) → R is a barrier which satisfies
the following conditions.

Condition 1. ϕ(t), t ∈ (0,∞), is a twice continuously differentiable function such
that ϕ(t) is decreasing, strictly convex, with limt→0 ϕ(t) = ∞, ϕ′(t) is increasing,
strictly concave, with limt→∞ ϕ′(t) = 0, and tϕ′(t) is bounded.

Condition 2. ϕ(t), t ∈ (0,∞), is bounded from below: there is ϕ ≤ 0 such that
ϕ(t) ≥ ϕ for all t ∈ (0,∞).

The most known and frequently used logarithmic barrier ϕ(t) = log t−1 = − log t
satisfies Condition 1, but does not satisfy Condition 2, since log t → ∞ as t → ∞.
Therefore, additional barriers have been proposed, for example barrier

ϕ(t) = log(t−1 + 1), t ∈ (0,∞),

which is positive (ϕ = 0), or

ϕ(t) = − log t, 0 < t ≤ 1,

ϕ(t) = −(t−1 − 4 t−1/2 + 3), t > 1,

which is bounded from below (ϕ = −3). Both these barriers satisfy Condition 1 and
Condition 2.
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Iterative determination of the minimax vector

The necessary conditions for (x, z) to be the minimizer of the barrier function
have the form

∇xBµ(x, z) = −
m∑

i=1

ni∑

j=1

∇fij(x)ϕ′(zi − fij(x)) = 0

and
∂Bµ(x, z)

∂zi

= hi(z) + µ
ni∑

j=1

ϕ′(zi − fij(x)) = 0, 1 ≤ i ≤ m,

where hi(z) = ∂h(z)/∂zi, 1 ≤ i ≤ m. For solving this system of n + m nonlinear
equations, we use the Newton method whose iteration step can be written in the
form




W (x, z) −A1(x)v1(x, z) . . . −Am(x)vm(x, z)
−vT

1 (x, z)AT
1 (x) h11(z) + eT

1 v1(x, z) . . . h1m(z)
. . . . . . . . . . . .

−vT
m(x, z)AT

m(x) hm1(z) . . . hmm(z) + eT
mvm(x, z)







∆x
∆z1

. . .
∆zm




= −




∑m
i=1 Ai(x)ui(x, z)

h1(z)− eT
1 u1(x, z)

. . .
hm(z)− eT

mum(x, z)


 ,

where

W (x, z) =
m∑

i=1

ni∑

j=1

∇2fij(x)uij(x, z) +
m∑

i=1

ni∑

j=1

∇fij(x)vij(x, z)(∇fij(x))T ,

uij(x, z) = −µϕ′(zi − fij(x)), vij(x, z) = µϕ′′(zi − fij(x)),

hij(z) =
∂2h(z)

∂zi∂zj

, 1 ≤ i ≤ m, 1 ≤ j ≤ ni,

and where Ai(x) = [∇fi1(x), . . . ,∇fini
(x)],

ui(x, z) =




ui1(x, z)
...

uini
(x, z)


 , vi(x, z) =




vi1(x, z)
...

vini
(x, z)


 , ei =




1
...
1


 .

This formula can be easily verified by the differentiation of the KKT conditions by
vectors x and z. Setting

C(x, z) = [A1(x)v1(x, z), . . . , Am(x)vm(x, z)],
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g(x, z) =
m∑

i=1

Ai(x)ui(x, z),

∆z =




∆z1

. . .
∆zm


 , c(x, z) =




h1(z)− eT
1 u1(x, z)

. . .
hm(z)− eT

mum(x, z)


 ,

H(z) = ∇2h(z), V (x, z) = diag(eT
1 v1(x, z), . . . , eT

mvm(x, z)),

we can rewrite the Newton system in the form

[
W (x, z) −C(x, z)
−CT (x, z) H(z) + V (x, z)

] [
∆x
∆z

]
= −

[
g(x, z)
c(x, z)

]
.

Now, let us have a problem, which is large-scale (the number of variables n is
large), but partially separable (the functions fij(x), 1 ≤ i ≤ m, 1 ≤ j ≤ ni, depend
on a small number of variables). Then we can assume that the matrix W (x, z) is
sparse and it can be efficiently decomposed. Two cases will be investigated. If m is
small (for example in the classic minimax problems, where m = 1), we use the fact
that

[
W −C
−CT H + V

]−1

=

[
W−1 −W−1C(CT W−1C −H − V )−1CT W−1 −W−1C(CT W−1C −H − V )−1

−(CT W−1C −H − V )−1CT W−1 −(CT W−1C −H − V )−1

]
.

The solution is determined from the formulas

∆z = (CT W−1C −H − V )−1(CT W−1g + c),

∆x = W−1(C∆z − g).

In this case, we need to decompose the large sparse matrix W of order n and the
small dense matrix CT W−1C −H − V of order m.

In the second case, we assume that the numbers ni, 1 ≤ i ≤ m, are small
and the matrix H(z) is diagonal (as in the sums of absolute values). Denoting
D = H(z) + V (x, z), the matrix

C(x, z)D−1(x, z)CT (x, z) = C(x, z)(H(z) + V (x, z))−1CT (x, z)

is sparse and we can use the fact that

[
W −C
−CT D

]−1

=

[
(W − CD−1CT )−1 (W − CD−1CT )−1CD−1

D−1CT (W − CD−1CT )−1 D−1 + D−1CT (W − CD−1CT )−1CD−1

]
.
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The solution is determined from the formulas

∆x = −(W − CD−1CT )−1(g + CD−1c),

∆z = D−1(CT ∆x− c).

In this case, we need to decompose the large sparse matrix W −CD−1CT of order n.
The inversion of the diagonal matrix D of order m is trivial.

In every step of the primal interior point method with the iterative determination
of the minimax vector, we know the value of the parameter µ and the vectors x ∈ Rn,
z ∈ Rm such that zi > Fi(x), 1 ≤ i ≤ m. Using the Newton system, we determine
direction vectors ∆x, ∆z and select a step-size α in such a way that

Bµ(x + α∆x, z + α∆z) < Bµ(x, z)

and z+
i > Fi(x

+), 1 ≤ i ≤ m. Finally, we set x+ = x + α∆x, z+ = z + α∆z and
determine a new value µ+ < µ. The above inequality is satisfied for sufficiently small
values of the step-size α, if the matrix of the Newton system is positive definite.

Theorem 1. Let the matrix G =
∑m

i=1

∑ni
j=1∇2fijuij be positive definite. Then the

matrix of the Newton system is positive definite.

Direct determination of the minimax vector

Minimization of the barrier function can be considered as the two-level optimiza-
tion

z(x) = arg min
z∈Z

Bµ(x, z),

x = arg min
x∈Rn

B(x; µ), B(x; µ)
∆
= Bµ(x, z(x)),

where Z is the set used in Assumption 2. The first equation serves for the deter-
mination of the optimal vector z(x) ∈ Rm corresponding to a given vector x ∈ Rn.
Assuming x fixed, function Bµ(x, z) is strictly convex (as a function of vector z),
since it is a sum of convex function h(z) and strictly convex functions µϕ(zi−fij(x)),
1 ≤ i ≤ m, 1 ≤ j ≤ ni. As a stationary point, its minimum is uniquely determined
by the KKT conditions. The following theorem holds for the logarithmic barrier.

Theorem 2. The system of equations

hi(z)−
ni∑

j=1

µ

zi − fij(x)
= 0, hi(z) =

∂h(z)

∂zi

, 1 ≤ i ≤ m,

with x ∈ Rn fixed, has the unique solution z(x; µ) ∈ Z ⊂ Rm such that

Fi(x) < zi ≤ zi(x; µ) ≤ zi, 1 ≤ i ≤ m,

where
zi = Fi(x) + µ/hi, zi = Fi(x) + niµ/hi,

and where hi > 0 are bounds used in Assumption 2 and hi = hi(z1, . . . , zm).
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Similar results can be obtained for other barriers as well. Using barrier

ϕ(t) = log(t−1 + 1),

we get equations

hi(z)−
ni∑

j=1

µ

(zi − fij(x))(zi − fij(x) + 1)
= 0, 1 ≤ i ≤ m,

and inequalities for zi(x; µ) with bound

zi = Fi(x) +
2µ/hi

1 +
√

1 + 4µ/hi

, zi = Fi(x) +
2niµ/hi

1 +
√

1 + 4niµ/hi

.

The system of nonlinear equations can be solved by the Newton method started,
e.g., from the point z such that zi = zi, 1 ≤ i ≤ m. If the Hessian matrix of the
function h(z) is diagonal, this system is decomposed on m scalar equations, which
can be efficiently solved by robust methods. If we are able to find a solution of
the nonlinear system for an arbitrary vector x ∈ Rn, we can restrict our attention
to the unconstrained minimization of the function B(x; µ) = Bµ(x, z(x; µ)), which
has n variables. It is suitable to know the gradient and the Hessian matrix of this
function.

Theorem 3. One has

∇B(x; µ) =
m∑

i=1

Ai(x)ui(x),

∇2B(x; µ) = W (x, z(x))− C(x, z(x))D(x, z(x))−1CT (x, z(x)),

where W (x, z(x)), C(x, z(x)), H(z(x)), V (x, z(x)) are matrices introduced in the
previous section and D(x, z(x)) = H(z(x)) + V (x, z(x)). If the matrix H(z(x)) is
diagonal, we can express the Hessian matrix in the form

∇2B(x; µ) = G(x, z(x)) +
m∑

i=1

Ai(x)Vi(x, z(x))AT
i (x)

−
m∑

i=1

Ai(x)Vi(x, z(x))eie
T
i Vi(x, z(x))AT

i (x)

∂2h(z(x))/∂z2
i + eT

i Vi(x, z(x))ei

,

where Ai(x), Vi(x, z(x)), 1 ≤ i ≤ m, and G(x, z(x)) are matrices introduced in the
previous section.

To determine the Hessian matrix inverse, we can use the relation obtained by the
decomposition of the Newton system described in the previous section. Using sub-
stitution c(x, z(x)) = 0 we get
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(∇2Bµ(x))−1 = W (x, z(x))−1 −W (x, z(x))−1C(x, z(x))
(
CT (x, z(x))W−1(x, z(x))C(x, z(x))−H(z(x))− V (x, z(x))

)−1

CT (x, z(x))W (x, z(x))−1.

If the nonlinear system is not solved with a sufficient precision, we rather use the
Newton system from the previous section, where the actual vector c(x, z(x; µ)) 6= 0
is substituted.

In every step of the primal interior point method with the direct determination
of the minimax vector, we know the value of the parameter µ and the vector x ∈ Rn.
Solving the nonlinear system we determine the vector z(x). Using the Hessian matrix
or its inverse, we determine a direction vector ∆x and select a step-size α in such a
way that

Bµ(x + α∆x, z(x + α∆x; µ)) < Bµ(x, z(x; µ))

(the vector z(x+α∆x; µ) is obtained as a solution of the nonlinear system, in which
x is replaced by x+α∆x). Finally, we set x+ = x+α∆x and determine a new value
µ+ < µ. Conditions for the direction vector ∆x to be descent are the same as in
Theorem 1. It suffices when the matrix G(x, z(x)) is positive definite.

Now, we describe an algorithm, in which the direction vector d = ∆x is deter-
mined in such a way that

−gT d ≥ ε0‖g‖‖d‖, c‖g‖ ≤ ‖d‖ ≤ c‖g‖

(uniform descent) where g = A(x)u(x; µ).

Algorithm 1.

Data: Termination parameter ε > 0, precision for the nonlinear equation solver
δ > 0, bounds for the barrier parameter 0 < µ < µ, rate of the barrier
parameter decrease 0 < λ < 1, restart parameters 0 < c < c and ε0 > 0,
line search parameter ε1 > 0, rate of the step-size decrease 0 < β < 1, step
bound ∆ > 0, way of direction determination D (D = 1 or D = 2).

Input: Sparsity pattern of matrix A(x). Initial estimation of vector x.

Step 1: Initiation. Set µ = µ. If D = 1, determine the sparsity pattern of ma-
trix W = W (x; µ) from the sparsity pattern of matrix A(x) and carry out
a symbolic decomposition of W . If D = 2, determine the sparsity pattern
of matrices W = W (x; µ) and C = C(x; µ) from the sparsity pattern of ma-
trix A(x) and carry out a symbolic decomposition of matrix W −CD−1CT .
Compute values fij(x), 1 ≤ i ≤ m, 1 ≤ j ≤ ni, Fi(x) = max1≤j≤ni

fij(x),
1 ≤ i ≤ m, and F (x) = h(F1(x), . . . , Fm(x)). Set k := 0 (iteration count)
and r := 0 (restart indicator).

144



Step 2: Termination. Solving the nonlinear system with precision δ, obtain vectors
z(x; µ) and u(x; µ). Compute matrix A := A(x) and vector g := g(x; µ) =
A(x)u(x; µ). If µ ≤ µ and ‖g‖ ≤ ε, then terminate the computation. Oth-
erwise set k := k + 1.

Step 3: Approximation of the Hessian matrix. Set G = G(x; µ) or compute an
approximation G of the Hessian matrix G(x; µ) by using either gradient
differences or variable metric updates.

Step 4: Direction determination. If D = 1, determine vector d = ∆x by using the
Gill-Murray decomposition of matrix W . If D = 2, determine vector d = ∆x
by using the Gill-Murray decomposition of matrix W − CD−1CT .

Step 5: Restart. If r = 0 and the direction vector is not uniformly descent, select
a positive definite diagonal matrix D̃, set G = D̃, r := 1 and go to Step 4.
If r = 1 and the direction vector is not uniformly descent, set d := −g (the
steepest descent direction). Set r := 0.

Step 6: Step-length selection. Define the maximum step-length α = min(1, ∆/‖d‖).
Find a minimum integer l≥0 such that B(x + βlαd; µ)≤B(x; µ) + ε1β

lαgTd
(the nonlinear system has to be solved at all points x + βjαd, 0 ≤ j ≤ l).
Set x := x + βlαd. Compute values fij(x), 1 ≤ i ≤ m, 1 ≤ j ≤ ni,
Fi(x) = max1≤j≤ni

fij(x), 1 ≤ i ≤ m, and F (x) = h(F1(x), . . . , Fm(x)).

Step 7: Barrier parameter update. Determine a new value of the barrier parameter
µ ≥ µ by Procedure A or Procedure B. Go to Step 2.

Procedure A.

Phase 1: If ‖g(xk; µk)‖ ≥ g, set µk+1 = µk, i.e., the barrier parameter is not changed.

Phase 2: If ‖g(xk; µk)‖ < g, set

µk+1 = max
(
µ̃k+1, µ

)
,

where

µ̃k+1 = min

[
max

(
λµk,

µk

σµk + 1

)
, max(‖g(xk; µk)‖2, 10−2k)

]
.

The values µ = 10−10, λ = 0.85, and σ = 100 are chosen as defaults.

Procedure B.

Phase 1: If ‖g(xk; µk)‖2 ≥ ρµk, set µk+1 = µk, (the barrier parameter is not changed).

Phase 2: If ‖g(xk; µk)‖2 < ρµk, set

µk+1 = max(µ, ‖gk(xk; µk)‖2).

The values µ = 10−10 and ρ = 0.1 are chosen as defaults.
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Global convergence for bounded barriers

We first assume that function ϕ(t) is bounded from below, δ = ε = µ = 0 and all
computations are exact. We will investigate an infinite sequence {xk}∞1 generated
by Algorithm 1. Proofs of all assertions are given in [4].

Lemma 1. Let Assumption 1, Assumption 2, Condition 1, Condition 2 be satis-
fied. Let {xk}∞1 and {µk}∞1 be sequences generated by Algorithm 1. Then sequences
{B(xk; µk)}∞1 , {z(xk; µk)}∞1 , and {F (xk)}∞1 are bounded. Moreover, there is L ≥ 0
such that

B(xk+1; µk+1) ≤ B(xk+1; µk) + L(µk − µk+1) ∀k ∈ N.

Lemma 2. Let assumptions of Lemma 1 and Assumption 3 be satisfied. Then the
values {µk}∞1 , generated by Algorithm 1, form a non-increasing sequence such that
µk → 0.

Theorem 4. Let assumptions of Lemma 1 and Assumption 3 be satisfied. Consider
a sequence {xk}∞1 generated by Algorithm 1 (with δ = ε = µ = 0). Then

lim
k→∞

m∑

i=1

ni∑

j=1

uij(xk; µk)∇fij(xk) = 0,
ni∑

j=1

uij(xk; µk) = hi(z(xk; µk)),

uij(xk; µk) ≥ 0, zi(xk; µk)− fij(xk) ≥ 0,

lim
k→∞

uij(xk; µk)(zi(xk; µk)− fij(xk)) = 0

pro 1 ≤ i ≤ m a 1 ≤ j ≤ ni.

Corollary 1. Let assumptions of Theorem 4 hold. Then every cluster point x ∈ Rn

of the sequence {xk}∞1 satisfies KKT conditions of the original problem, where z and
u (with elements zi and uij, 1 ≤ i ≤ m, 1 ≤ j ≤ ni) are cluster points of sequences
{z(xk; µk)}∞1 and {u(xk; µk)}∞1 .

Theorem 5. Consider the sequence {xk}∞1 generated by Algorithm 1. Let assump-
tions of Lemma 1 and Assumption 3 hold. Then, choosing δ > 0, ε > 0, µ > 0
arbitrarily, there is an index k ≥ 1 such that

‖g(xk; µk)‖ ≤ ε, |hi(z(xk; µk))−
ni∑

j=1

uij(xk; µk)| ≤ δ,

uij(xk; µk) ≥ 0, zi(xk; µk)− fij(xk) ≥ 0,

uij(xk; µk)(zi(xk; µk)− fij(xk)) ≤ µ

for 1 ≤ i ≤ m and 1 ≤ j ≤ ni.
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Global convergence for the logarithmic barrier

We first assume that ϕ(t) = − log t, δ = ε = µ = 0 and all computations are
exact. We will investigate an infinite sequence {xk}∞1 generated by Algorithm 1.
Proofs of all assertions are given in [4].

Lemma 3. Let Assumption 2, Assumption 4 be satisfied, ϕ(t) = − log t and the
Hessian matrix H(z(x; µ)) be diagonal. Let {xk}∞1 and {µk}∞1 be sequences generated
by Algorithm 1. Then sequences {B(xk; µk)}∞1 , {z(xk; µk)}∞1 , and {F (xk)}∞1 are
bounded. Moreover, there is L ≥ 0 such that

B(xk+1; µk+1) ≤ B(xk+1; µk) + L(µk − µk+1) ∀k ∈ N.

Lemma 4. Let assumptions of Lemma 3 and Assumption 3 be satisfied. Then the
values {µk}∞1 , generated by Algorithm 1, form a non-increasing sequence such that
µk → 0.

Theorem 6. Let assumptions of Lemma 3 and Assumption 3 be satisfied. Consider
a sequence {xk}∞1 generated by Algorithm 1 (with δ = ε = µ = 0). Then

lim
k→∞

m∑

i=1

ni∑

j=1

uij(xk; µk)∇fij(xk) = 0,
ni∑

j=1

uij(xk; µk) = hi(z(xk; µk)),

uij(xk; µk) ≥ 0, zi(xk; µk)− fij(xk) ≥ 0,

lim
k→∞

uij(xk; µk)(zi(xk; µk)− fij(xk)) = 0

for 1 ≤ i ≤ m a 1 ≤ j ≤ ni.

Corollary 2. Let assumptions of Theorem 6 hold. Then every cluster point x ∈ Rn

of the sequence {xk}∞1 satisfies KKT conditions of the original problem, where z and
u (with elements zi and uij, 1 ≤ i ≤ m, 1 ≤ j ≤ ni) are cluster points of sequences
{z(xk; µk)}∞1 and {u(xk; µk)}∞1 .

Theorem 7. Consider the sequence {xk}∞1 generated by Algorithm 1. Let assump-
tions of Lemma 3 and Assumption 3 hold. Then, choosing δ > 0, ε > 0, µ > 0
arbitrarily, there is an index k ≥ 1 such that

‖g(xk; µk)‖ ≤ ε, |hi(z(xk; µk))−
ni∑

j=1

uij(xk; µk)| ≤ δ,

uij(xk; µk) ≥ 0, zi(xk; µk)− fij(xk) ≥ 0,

uij(xk; µk)(zi(xk; µk)− fij(xk)) ≤ µ

for 1 ≤ i ≤ m a 1 ≤ j ≤ ni.
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Special cases and numerical results

The simplest generalized minimax function is the sum

F (x) =
m∑

i=1

Fi(x) =
m∑

i=1

max
1≤j≤ni

fij(x).

In this case, ∂h(z)/∂zi = 1, 1 ≤ i ≤ m, for an arbitrary vector z and the matrix
H(z) is diagonal. The nonlinear system decomposes on m scalar equations

1−
ni∑

j=1

µ

zi − fij(x)
= 0, 1 ≤ i ≤ m,

whose solutions lie in the intervals

Fi(x) + µ ≤ zi(x) ≤ Fi(x) + niµ, 1 ≤ i ≤ m.

If m = 1, we obtain the classic minimax problems. Numerical experiments for
minimax functions were carried out using a collection of 22 test problems (Test 14)
described in [5]. The source texts can be downloaded from http://www.cs.cas.cz/

luksan/test.html. Compared methods: P1–the logarithmic barrier, P2–positive
barrier, P3–bounded barrier, SM–smoothing method, DI–primal-dual method. The
results:

Method NIT NFV NFG NR NL NF NT Time
P1-NM 1675 3735 11109 327 - - 4 1.92
P2-NM 2018 6221 12674 605 - - 7 2.09
P3-NM 1777 3989 11596 379 1 - 7 2.11
SM-NM 4123 12405 32451 823 - - 7 9.64
DI-NM 1771 3732 17952 90 1 - 10 6.34
P1-VM 1615 2429 1637 - - - 1 1.05
P2-VM 2116 3549 2138 2 - - 3 1.47
P3-VM 1985 3208 2007 1 - - 3 1.27
SM-VM 7244 21008 7266 - 1 - 8 9.09
DI-VM 1790 3925 1790 5 1 - 9 4.59

If ni = 2, 1 ≤ i ≤ m, the nonlinear equations are quadratic and their solution
has the form

zi(x) = µ +
fi1(x) + fi2(x)

2
+

√√√√µ2 +

(
fi1(x)− fi2(x)

2

)2

, 1 ≤ i ≤ m.

This formula can be used in the case when function h : Rm → R contains absolute
values Fi(x) = |fi(x)| = max(fi(x),−fi(x)). Then fi1(x) = fi(x) a fi2(x) = −fi(x),
so that

zi(x) = µ +
√

µ2 + f 2
i (x), 1 ≤ i ≤ m.
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Numerical experiments for sums of absolute values were carried out using a col-
lection of 22 test problems (Test 14) described in [5]. The source texts can be down-
loaded from http://www.cs.cas.cz/luksan/test.html. Compared methods: PT–
logarithmic barrier and a trust-region realization, PL–logarithmic barrier and a line-
search realization, DI–primal-dual method, BM–bundle variable metric method. The
results:

Method NIT NFV NFG NR NL NF NT Time
PT-NM 3014 3518 27404 1 - - 4 4.66
PL-NM 2651 12819 22932 3 1 - 6 5.24
DI-NM 5002 7229 42462 328 1 - 13 33.52
PT-VM 3030 3234 3051 - - 1 1 1.44
PL-VM 2699 3850 2721 - - 1 2 1.42
DI-VM 7138 14719 14719 9 2 - 9 86.18
BM-VM 34079 34111 34111 22 1 1 11 25.72

The above tables demonstrate the high efficiency of Algorithm 1. The use of
a minimax structure together with the two-level optimization give much better results
than the use of standard nonlinear programming methods applied to the equivalent
nonlinear programming problem.
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THE BOX METHOD AND SOME ERROR ESTIMATION∗

Jaroslav Mlýnek

Abstract
This article focuses its attention on practical use of the box method for solving

certain type of partial differential equations. The heat conduction problem of the oil
transformer under stationary load is described by this equation. The knowledge of
the transformer operating temperature is important for ensuring correct functionality
and lifespan of transformer. We consider an elliptic partial differential equation of
second order with the Newton boundary condition on a rectangular domain. The
paper contains description of a numerical solution procedure of the heat problem and
an estimation of local discretization error. The box method is often called the finite
volume method, too. The solution of practical examples are presented as well.

1. Introduction

This paper deals with the stationary heat conduction problem. Our objective is
to solve the problem of the relative transformer screening warming with respect to
cooling oil of the transformer. The classical formulation of the problem is

− ∂

∂x1

(
a11

∂u

∂x1

)
− ∂

∂x2

(
a22

∂u

∂x2

)
+ cu = f (1)

in a rectangular domain Ω ⊂ R2 with the Newton boundary condition

αu +
∂u

∂nA

= g. (2)

The derivative with respect to conormal in (2) is defined by the relation

∂u

∂nA

= a11
∂u

∂x1

n1 + a22
∂u

∂x2

n2 (3)

and n = (n1, n2) denotes the unit outward normal to ∂Ω. The unknown function
u denotes the relative warming of the transformer screening with respect to cooling
oil of the transformer, i.e. the difference of temperatures of these two media. We
suppose u ∈ C2

(
Ω̄

)
, functions a11, a22, c, f ∈ C1

(
Ω̄

)
and α, g ∈ C (∂Ω, ), α (s) ≥ 0

on ∂Ω. The coefficients a11 and a22 describe the heat conduction character of the
screening in the x1-axis and x2-axis directions, respectively.

We will describe a numerical solution procedure of the heat conduction problem
model by the box method, local error estimation of the error of this method and
practical examples in the following paragraphs.

∗This work was supported by Project 1M4674788502 of Ministry of Education, Youth and Sports
of the Czech Republic.
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2. Use of the box method

We construct the triangulation τ on the closure of rectangle Ω (X1 ≤ x1 ≤
X2, Y1 ≤ x2 ≤ Y2) in a similar way as if we used the finite element method. We
construct a regular rectangular mesh with increments h1 = (X2 − X1)/p and h2 =
(Y2 − Y1)/q in the x1-axis and x2-axis direction, respectively, where p and q denote
the number of segments, to which the region is divided in the x1-axis and x2-axis
direction, respectively. A general node has coordinates Vrs = [X1 + rh1, Y1 + sh2],
where r ∈ {0, 1, . . . , p}, s ∈ {0, 1, . . . , q}. The rectangles with vertices defined at
points of mesh create elements of the triangulation τ . We construct a special case
of mesh dual to the mesh τ published in [4, p. 215]. Points Ti, 1 ≤ i ≤ 4, are
midpoints of abscissas defined by the mesh point Vrs and adjacent mesh points.
Then points Si, 1 ≤ i ≤ 4, are intersection points of axes of the abscissas mentioned.
The rectangle corresponds to node Vrs and is given by vertices S1, S2, S3 and S4 thus
creating element brs of the mesh dual to τ (see Fig. 1). If the node Vrs lies on the

Fig. 1: Element brs of the dual mesh corresponding to node Vrs.

boundary of Ω, the element brs is modified in the corresponding way. In particular,
the case when the node Vrs lies at “corner” of Ω is in Fig. 2. The elements brs are
characterized by two conditions: Ω̄ =

⋃
brs, where 0 ≤ r ≤ p, 0 ≤ s ≤ q, and int

brs∩ int bkl = ∅ for Vrs 6= Vkl.
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Fig. 2: Element bpq of the dual mesh corresponding to “corner” node Vpq.

We can transfer the term cu to the right hand side of the equation (1) and
integrate the left and right hand sides over the element brs. Then we get

∫

brs

[
− ∂

∂x1

(
a11

∂u

∂x1

)
− ∂

∂x2

(
a22

∂u

∂x2

)]
dx =

∫

brs

(f − cu) dx. (4)

Using now Green’s formula on the left hand side of the relation (4), we find that

∫

brs

[
− ∂

∂x1

(
a11

∂u

∂x1

)
− ∂

∂x2

(
a22

∂u

∂x2

)]
dx = −

∫

brs

∂

∂x1

(
a11

∂u

∂x1

)
dx−

−
∫

brs

∂

∂x2

(
a22

∂u

∂x2

)
dx = −

∫

∂brs

a11
∂u

∂x1

n1 ds−
∫

∂brs

a22
∂u

∂x2

n2 ds.

Then the relation (4) can be modified to read

−
∫

∂brs

a11
∂u

∂x1

n1 ds−
∫

∂brs

a22
∂u

∂x2

n2 ds =
∫

brs

(f − cu) dx. (5)

The left hand side of the equation (5) describes the quantity of heat supplied from or
delivered to the boundary of the element brs, the right hand side expresses the waste
heat arising in the element brs. In case of the boundary mesh point Vrs, the equation
of type (5) is modified. Using equations of type (5) at all mesh points Vrs and
applying suitable approximations of derivatives and integrals, we obtain a system of
linear algebraic equations with a band matrix. The solution of this system gives us
the approximation of warming at nodes Vrs of the mesh. Now we will concentrate
on the approximation of equations of type (5) and the local approximation error at
node Vrs.
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Because the element brs is a rectangle, in case of internal element we can use the
approximation (see Fig. 1)

a11 (T1)
∂u (T1)

∂x1

n1 ≈ a11 (T1)
u(Vr+1s)− u(Vrs)

h1

. (6)

With respect to the supposed smoothness of function u, we reach the O(h2
1)-order

error in the approximation (6). Similar approximations can be carried out for
points T2, T3 and T4 in Fig. 1.

We focus now on the boundary element, for example element brq, where 1 ≤ r ≤
p− 1. Using relations (2) and (3), we obtain the expression

a22(Vrq)
∂u

∂x2

(Vrq)n2 = g(Vrq)− α(Vrq)u(Vrq). (7)

In case of the boundary “corner” element (see Fig. 2), we can form an approximation
of the value u(P3) (where the auxiliary point P3 is midpoint of abscissa T3Vpq) from
the values u(Vp−1q) and u(Vpq) using Lagrange’s interpolation polynomial of the first
degree. As we suppose u ∈ C2(Ω̄), the error order of approximation is O(h2

1)
(see [3, p. 64]) and the value

a22(P3)
∂u

∂x2

(P3)n2

can be approximated through the use of the relation (2).
Now we target at the approximation of integrals in equations of type (5). We ap-

ply the midpoint rule to the approximation. If function v ∈ C2
[a, b] then the midpoint

rule gives ∣∣∣∣∣∣

b∫

a

v(x) dx− v

(
a + b

2

)
(b− a)

∣∣∣∣∣∣
≤ M (b− a)3 ,

where M ∈ R (see, for example, [1, p. 178]). In case of the internal element brs, we
use points Ti, 1 ≤ i ≤ 4, as midpoints for the integration over the boundary of the
element brs on the left hand side of the equation (5) . The right hand side of the
equation (5) is approximated in the form

∫

brs

(f − cu) dx ≈ (f(Vrs)− c (Vrs)u(Vrs))h1h2.

In case of the boundary element we use the expressions of type (7) for the approx-
imation of integrals, too. At the boundary “corner” element it is possible to use
auxiliary points of type P3.

Let us set h =max(h1, h2). Applying the above mentioned procedure, we find
that the local approximation error of the equation of type (5) for every element brs

is O(h2), where r ∈ {0, 1, . . . , p}, s ∈ {0, 1, . . . , q}. General questions of the box
method error estimation are solved in [2].
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3. Practical numerical examples

Now we will solve a real-life technical problem of finding the screening warming
with respect to cooling oil of the screening (cooling oil flows around the screening)
by using the above mentioned box method. Transformer screening is warmed in
consequence of existing eddy currents and it is considered in the form of a thin-
walled cylinder. The temperature field is supposed to be rotationally symmetric (see
Fig. 3). Hence, the warming problem can be solved in the screening cross section on
two dimensional untypical closed rectangular domain Ω. Then the equation (1) with
the boundary condition (2) can be written in the form

∂

∂x1

(
a11

∂u

∂x1

)
+

∂

∂x2

(
a22

∂u

∂x2

)
= −q(x1, x2) (8)

with the Newton boundary condition

a11
∂u

∂x1

n1 + a22
∂u

∂x2

n2 + αu = αk(x2 − Y1)

(9)
on the rectangle Ω. As mentioned above,
the solution u represents the warming of
the screening with respect to cooling oil,
a11 and a22 are real values in this case;
q(x1,x2) is the volume density of losses. In
the boundary condition (9), the function α
means the heat transfer coefficient on the
boundary of the domain, a real constant k
allows to express the variable temperature
of oil in the vicinity of the screening in
the x2-axis direction. The equation (8)
with the boundary condition (9) is suit-
able to solve as a 2D problem. The solu-
tion u depends on the functions q(x1, x2)
and α(x1, x2), too. If q depends only on
the variable x2 and α is constant function
on ∂Ω, then this problem can be solved as
a 1D problem. Fig. 3: Crosscut – the position of the

screening in the transformer container.
Example 1
The function q is given by the relation q(x1,x2) = ρ δ2(x1, x2), where ρ is the specific
resistance of the screening material, δ denotes the density of eddy currents. Input
parameters: X1 = 1.273m, X2 = 1.280m, Y1 = 0.000m, Y2 = 1.200m, a11 = 3W/mK,
a22 = 20W/mK, ρ = 0.143× 10−6Ωm, α(x1, x2) = 50W/m2K for x2 6= Y1 = 0m and
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α(x1, x2) = 0W/m2K for x2 = Y1 = 0m, k = 0K/m, the current density δ(x1, x2) is
given by means of 45 values between 0.1158× 106Am−2 and 0.1993× 107Am−2, the
current density at the nodes is computed by means of linear interpolation.

Table 1 lists approximate values of warming at chosen nodes computed by using
the box method. The values of warming u first of all depend on the input values
of function δ. The given values δ(x1, x2) are decreasing in the x1-direction for
the constant value of variable x2. Hence, the computed values of warming u are
decreasing in the x1-axis direction (computed warming u at the nodes with x1 =
1.27416m is slightly higher than at the nodes with x1 = X1 = 1.273m in consequence
of cooling oil).

x2[m] X1 = 1.273m x1 = 1.27416m x1 = 1.27533m X2 = 1.280m
Y2 = 1.200 3.993 4.021 3.965 3.731

1.104 6.333 6.399 6.267 5.807
1.008 7.940 8.014 7.866 7.299
0.912 10.100 10.197 10.003 9.278
0.816 12.311 12.429 12.193 11.311
0.720 12.394 12.483 12.305 11.455
0.624 13.413 13.516 13.310 12.187
0.528 13.445 13.545 13.345 12.418
0.432 13.466 13.570 13.362 12.430
0.336 13.211 13.313 13.109 12.195
0.240 12.957 13.054 12.860 11.967
0.144 12.640 12.725 12.555 11.692
0.048 12.491 12.581 12.401 11.541

Y1 = 0.000 12.289 12.356 12.213 11.378

Tab. 1: The values of the screening warming in K for selected nodes, h1 = 0.0011667m
and h2 = 0.04800m.

Example 2
The volume density of losses q depends on x2 only. Input parameters: X1 = 0.860m,
X2 = 0.868m, Y1 = 0.033m, Y2 = 1.900m, a11 = 3W/mK, a22 = 20W/mK, the vol-
ume density of losses q(x2) is given by means of 36 values between 0.4904×102W/m3

and 0.9348 × 106W/m3, values of the function q at the nodes are computed by
means of linear interpolation, α(x1, x2) = 50W/m2K for x1 6= X2 = 0.868m and
α(x1, x2) = 15W/m2K for x1 = X2 = 0.868m, k = 0K/m.
The volume density of losses q depends only on x2-axis in this example. The com-
puted values of warming u first of all depend on the impute values of function q. The
value of the heat transfer coefficient α(x1, x2) is lower for x1 = X2 than for the other
parts of ∂Ω. Hence, the screening is more cooled on the part of ∂Ω with x1 = X1

than on the part of ∂Ω with x1 = X2. Therefore, computed values of warming u
are a little lower near the part of ∂Ω with x1 = X1 than near the part of ∂Ω with
x1 = X2 in the x1-axis direction. Table 2 lists approximate values of the warming at
chosen nodes computed by using the box method.
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x2[m] X1 = 0.860m x1 = 0.864m x1 = 0.866m X2 = 0.868m
Y2 = 1.900 71.369 74.530 74.640 74.585

1.783 26.997 28.214 28.270 28.242
1.666 6.753 7.056 7.068 7.062
1.550 2.247 2.348 2.352 2.350
1.433 1.736 1.814 1.818 1.816
1.316 3.105 3.244 3.250 3.247
1.200 3.601 3.762 3.768 3.765
1.083 3.144 3.285 3.289 3.287
0.966 2.855 2.983 2.989 2.986
0.850 2.962 3.095 3.101 3.098
0.733 3.457 3.612 3.618 3.615
0.616 3.449 3.602 3.608 3.605
0.500 1.503 1.571 1.575 1.573
0.383 2.319 2.422 2.426 2.424
0.266 2.449 3.604 3.612 3.608
0.150 17.614 18.413 18.451 18.432

Y1 = 0.033 60.035 62.690 62.782 62.736

Tab. 2: The values of the screening warming in K for selected nodes, h1 = 0.002m and
h2 = 0.029167m.
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NUMERICAL SOLUTION OF BOUNDARY VALUE PROBLEMS BY
MEANS OF B-SPLINES

Vratislava Mošová

Galerkin method is often used for solving boundary value problems. The most
favorite method for solving problems from engineering practice, the finite element
method (FEM), corresponds to the Galerkin method, where in particular continuous
functions with small support form a basis. By Céa’s lemma (see [5]), the error
of the Galerkin approximation is bounded by means of the minimal error in the
space of test functions. It means that success of the Galerkin method depends on
the choice of basis functions. If we focus our attention on approximation theory,
then B-splines represent a successful tool for approximation of functions. B-splines
are piecewise polynomial functions with compact support that can be computed by
means of simple schemes. Their differentiation and integration can be algorithmized.
They are closely connected to computational geometry (see [5], [4]).

In this article, we deal with solution of boundary value problems using the
Galerkin method, where weighted B-splines form the basis. These splines and their
properties are described in the first section. Examples of solutions of 1D boundary
value problems using B-spline basis are given in the second section.

1. B-splines and their properties

Definition 1 Let b0(x) be the characteristic function of the interval [0, 1] and

bn(x) =

∫ x

x−1

bn−1(ξ) dξ, n = 1, 2, . . . . (1)

For integer h > 0 and number k ∈ Z, the function

bn
k,h(x) = bn(x/h− k) (2)

is the B-spline of order n on the grid of width h.
Remark 1 B-splines bn

k,h(x) have the following useful properties:

• B-spline bn
k,h(x) is positive on the interval (kh, (k+n+1)h) and vanishes outside

this interval.

• B-splines bn
k,h(x) are polynomials of order n on each interval (kh, (k + 1)h),

k = 0, . . . , n.
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• Recursive formulas enable to compute the derivatives

dbn
k,h(x)

dx
=

1

h

(
bn−1
k,h (x)− bn−1

k+1,h(x)
)

(3)

and the scalar products

sn
k−l =

∫

R
bn
k,h(x)bn

l,h(x) dx = hb2n+1(n + 1 + k − l), (4)

∫

R
(bn

k,h(x))′(bn
l,h(x))′ dx =

1

h
(2sn−1

k−l − sn−1
k−l−1 − sn−1

k−l+1), (5)

which we may encounter in the weak formulation of certain boundary value
problems.

• The identity

bn
k,h(x) = 2−n

n+1∑

l=0

(
n + 1

l

)
bn
2k+l, h

2

(x) (6)

is useful for mesh refinement.

• It is possible, thanks to Marsden’s equality

(x− t)n =
∑

k∈Z
hn(k + 1− t

h
) . . . (k + n− t

h
)bn

k,h(x), x, t ∈ R, (7)

to express any polynomial as a linear combination of the B-splines. The relation
(7) plays an important role in the stabilization of bases and error estimates.

We receive multivariate B-splines as tensor products of the univariate ones.
Definition 2 For x ∈ Rm, k ∈ Zm, n ∈ N and h > 0 the function

bn
k,h(x) =

m∏
i=1

bn
ki,h

(xi) (8)

is the m-variate B-spline of degree n on the grid of width h.

The nonzero restrictions of B-splines bn
k,h to Ω can be taken as a basis for the

solution of Neumann boundary value problem on a bounded domain Ω ⊂ Rm. But
these B-splines are not suitable for solving any Dirichlet boundary value problem,
because their linear combination

∑

k∈K

bn
k,h(x)uk, K = {k| supp bn

k,h ∩ Ω 6= 0}

generally does not satisfy essential boundary conditions. It is possible to remove this
disproportion if we work with weighted B-splines.
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Definition 3 Let a weight function1 w and a B-spline bn
k,h be given, then

bk(x) = w(x)bn
k,h(x) (9)

is called the weighted B-spline.

2. Boundary value problems and B-splines

Example 1 Consider the 1D Neumann boundary value problem

u′′(x) + 162u(x) = x, x ∈ (0, 1), (10)

u′(0) = u′(1) = 0. (11)

Find an approximation of the weak solution using B-splines defined above.
Solution: We find u ∈ W 1,2(0, 1) such that

−
∫ 1

0

u′v′ dx + 162

∫ 1

0

uv dx =

∫ 1

0

xv dx, ∀v ∈ W 1,2(0, 1). (12)

The unknown function u(x) is approximated by

ũ(x) =
N∑

k=1

b3
k−3,h(x)uk

over N uniformly distributed nodes (h = 1
N−1

). This approximation, in conjunction
with the Galerkin method, provides a mesh-free computational formulation of the
boundary value problem. The system of linear equations has the form

Aũ = f, (13)

ũ = (u1, . . . , uN)T , f = (f1, . . . fN)T , A =




a11 . . . a1N

. . . . . . . . .
aN1 . . . aNN


 ,

fj =

∫

Ω

f(x)b3
j−3,h(x) dx,

ai,j =

∫

Ω

[−(b3
i−3,h(x))′(b3

j−3,h(x))′ + 162 b3
i−3,h(x)b3

j−3,h(x)
]

dx.

Results for N = 11 nodes are given in Figure 1 and in Table 1.

1Weight function is a nonnegative continuous function on Ω that vanishes on the boundary ∂Ω.
For r > 0 we can put w(x) = dist(x, ∂Ω)r, x ∈ Ω. If r = 1 then w is called the standard weight
function.
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Fig. 1: The exact solution of the Neumann BVP and its approximation for N = 11.

N 8 11 14 21 31
max|u− ũ| 1.8× 10−3 8× 10−5 14× 10−6 16× 10−7 24× 10−8

Tab. 1: Dependence of the error of the approximation on the number of nodes.

Example 2 Solve the 1D Dirichlet boundary value problem

u′′(x) + 162u(x) = x, x ∈ (0, 1), (14)

u(0) = u(1) = 0 (15)

using B-splines.
Solution: We find u ∈ W 1,2

0 (0, 1) such that

−
∫ 1

0

u′v′ dx + 162

∫ 1

0

uv dx =

∫ 1

0

xv dx, ∀v ∈ W 1,2
0 (0, 1). (16)

We suppose that nodes x1, . . . , xN , at which the approximate values are computed,
are uniformly distributed.

i) We replace the original set {b3
k−3,h(x)}N

k=1 by the set of weighted B-splines. We
consider the Galerkin approximation in the form

ũ(x) =
N∑

k=1

w1(x)b3
k−3,h(x)uk, where w1(x) =





x/s, if 0 < x < s
1, if s ≤ x ≤ 1− s

(1− x)/s, if 1− s < x < 1

and the parameter s represents the width of the strip inside [0, 1], where the function
w1 6= 1. Results for N = 11 and s = 0.2 are given in Figure 2. The dependence of
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Fig. 2: The exact solution of the Dirichlet BVP and its approximation for N = 11, linear
weight function and s = 0.2.

N 8 11 14 21 31
s = 0.2 1.5× 10−2 1.1× 10−3 4× 10−4 2× 10−4 10−4

s = 0.3 1.2× 10−3 1.7× 10−3 1.2× 10−3 8× 10−4 4.8× 10−4

s = 0.4 2.4× 10−3 4× 10−4 3× 10−4 2× 10−4 1.5× 10−4

Tab. 2: The error of the approximation for different number of nodes and for different
widths of the strip.

the error max |u− ũ| on the number N of nodes and on the width of the strip s can
be seen in Table 2.

Not only the width s of the strip affects the quality of the approximate solu-
tion, but also the choice of the proper weight function is important. The errors of
approximation for the linear weight function w1 and the quadratic weight function

w2(x) =





(
2− x

s

)x

s
, if 0 < x < s

1, if s ≤ x ≤ 1− s
(
2− 1− x

s

)1− x

s
, if 1− s < x < 1

for N = 11 and s = 0.2 are compared in Table 3. The quadratic weight function
produces more accurate results than the linear weight function.

The errors for the linear weight function w1 and for the quadratic weight function
w2 for N = 11 and for different values of the parameter s are given in Table 4.

Note that the weighted B-splines w1b
3
k,h have not the first derivative and w2b

3
k,h

have not the second derivative in some points of the interval [0, 1]. Considering that
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N 8 11 14 21 31
ew1 1.5× 10−2 1.1× 10−3 4× 10−4 2× 10−4 10−4

ew2 8× 10−3 5.3× 10−4 2× 10−4 8.8× 10−5 6.4× 10−5

Tab. 3: The error ewi =max|u − ũwi | of the approximation for different form of weight
functions and different values of s.

s 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
ew1 × 104 22 11 16 17 7.4 4 4.3 11
ew2 × 104 13 5.3 5.1 6.1 5.4 4 3.1 3.4

Tab. 4: The error ewi =max|u − ũwi | of the approximation for different forms of weight
functions and different values of s.

these functions are elements of the space W 1,2
0 , they can be advantageously used in

our problem, in spite of the fact that the smoothness of these basis functions is lower
than the smoothness of original cubic splines. It can be seen from Figure 2 and
Table 3 that this fact has only small influence on approximation properties of the
used weighted basis. The amplitude and frequency of the approximation received for
N = 11 and w1 are in accordance with the analytic solution. The errors received in
the case of piecewise linear and quadratic weight functions are similar. The quadratic
weight function gives a bit better results, very similar to the case when we use e.g.
the perfectly smooth weight function w(x) = sin(πx). (For more information about
weight functions see [4].)

ii) If the basis contains B-splines that only have a small part of their support in the
considered interval, then the system of linear equations (13) is ill-conditioned and
convergence of the iterative process can be slow. This can be improved if we modify
the B-splines whose supports intersect the boundary.

Consider again the uniformly distributed nodes 0 = x1 < · · · < xN = 1, cubic
splines b3

k,h, and the weight function w1. Let

ũ(x) =
N−4∑

k=5

w1(x)b3
k−3,h(x)uk

+ 4w1(x)
(
b3
−2,h(x)u1 + b3

0,h(x)u3 + b3
N−3,h(x)uN + b3

N−5,h(x)uN−2

)

− 6w1(x)
(
b3
−1,h(x)u2 + b3

N−4,h(x)uN−1

)− w1(x)
(
b3
1,h(x)u4 + b3

N−6,h(x)uN−3

)
.

The errors for s = 0.2 and for different values of N are provided in Table 5.

N 8 11 14 21 31
maxw1|u− ũ| 1.5× 10−2 1.4× 10−3 3× 10−4 2× 10−4 8× 10−5

Tab. 5: Dependence of the error of approximation on the number of nodes.
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3. Conclusion

In this contribution, we presented methods of solving boundary value problems
using the Galerkin method with B-spline basis. This method belongs to the meshless
methods, because no explicitly given mesh is required for its realization. (For more
information about the meshless methods see [1], [2], [3]).

The weighted B-splines are a simple and comfortable tool from the computational
point of view (recursive formulas enable to compute derivatives and scalar products
of B-splines easily, see Remark 1). The size of support and smoothness of B-splines
depend on the parameters n and h, which we choose at the beginning of the com-
putation. In case of the Neumann boundary value problem it suffices to work with
B-splines only, whereas for the Dirichlet boundary value problem it is necessary to
use the weighted B-splines.

The error of any approximation depends not only on the number of nodes, but on
another factors, too. Example 2 showed that in the case of the Dirichlet problem the
error of the resulting approximation can become smaller if a proper weight function
is chosen. The influence of the choice of the weigh function and of the width s of the
the strip on the approximate solution can be the subject of a further study.
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ON UNIQUENESS OF A WEAK SOLUTION TO THE STEADY
NAVIER-STOKES PROBLEM IN A PROFILE CASCADE WITH
A NONLINEAR BOUNDARY CONDITION ON THE OUTFLOW∗

Tomáš Neustupa

1. Introduction

The paper deals with theoretical analysis of the mathematical model of viscous
incompressible stationary flow through a plane cascade of profiles. The considered
fluid moves around an infinite row of profiles which periodically repeat in one spatial
direction. This property enables us to reduce the problem to a bounded domain
which represents just one spatial period. We assume that the velocity satisfies the
Dirichlet boundary condition on the inflow and on the profile, a certain “natural”
nonlinear boundary condition of the “do nothing-type” on the outflow and periodic
boundary conditions on the artificial boundaries which separate the chosen spatial
period from other periods. We present the weak formulation of the problem and
recall the theorem on the existence of a weak solution. Afterwards, we study the
question of uniqueness of the weak solution. We arrive at a theorem stating that the
solution is unique if the data prescribed on the boundary and the external specific
body force are in certain norms “sufficiently small” with respect to the viscosity. This
result is in agreement with known theorems on uniqueness in the case of the Dirichlet
boundary condition on the whole boundary, see e.g. the books on the Navier-Stokes
equations by R. Temam and G. P. Galdi.

2. The geometry of the problem

The considered 2D domain Ω, representing one spatial period of the flow field
around the infinite and unbounded series of profiles, is sketched on Fig. 1. Its bound-
ary consists of the curves Γi (the inflow), Γw (the surface of the profile), Γ− and Γ+

(the lower and the upper artificial boundaries), and Γo (the outflow). The reduction
of the original problem for an infinite profile cascade to just one spatial period is
standard and the main idea standing in the background is that the weak solution
constructed in one spatial period Ω, periodically extended in the direction of the
x2-axis, becomes a solution for the whole profile cascade, see [2] for details.

∗The research was supported by the research plan of the Ministry of Education of the Czech
Republic No. MSM 6840770010.
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3. The classical formulation of the boundary-value problem

We denote by u = (u1, u2) the (fluid) velocity, by p the kinematic pressure and
by n the outer normal vector on the boundary. We study the flow described by 2D
steady Navier-Stokes equation

(u · ∇)u = f − ∇p + ν ∆u. (1)

The condition of incompressibility is

div u = 0. (2)

We prescribe the inhomogeneous Dirichlet boundary condition on the inlet and the
homogeneous no-slip Dirichlet boundary condition on the profile

u = g on Γi, (3)

u = 0 on Γw. (4)

We suppose that the conditions of periodicity are fulfilled on the artificial bound-
aries Γ− and Γ+

u(x1, x2 + τ) = u(x1, x2) for (x1, x2) ∈ Γ−, (5)

∂u

∂n
(x1, x2 + τ) = −∂u

∂n
(x1, x2) for (x1, x2) ∈ Γ−, (6)

p(x1, x2 + τ) = p(x1, x2) for (x1, x2) ∈ Γ−. (7)

We use the nonlinear do-nothing-type boundary condition (proposed by Bruneau
and Fabri in [1]) on the outflow Γo

−ν
∂u

∂n
+ p n− 1

2
(u · n)− u = h. (8)
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4. The weak formulation of the boundary-value problem and the theorem
on existence

We denote by H1(Ω) the usual Sobolev space and by H1(Ω)2 :=
[
H1(Ω)

]2
the

space of two component vector functions with both components in H1(Ω). We define

V :=
{
v ∈ H1(Ω)2; v = 0 a.e. in Γi ∪ Γw, v(x1, x2 + τ) = v(x1, x2)

for a.a. (x1, x2) ∈ Γ−, and div v = 0 a.e. in Ω
}
.

V is equipped with the norm |||v||| := ‖∇v‖L2(Ω)4 , which is equivalent to the norm
in H1(Ω)2.

In order to realize the inhomogeneous boundary condition (3), we introduce an
auxiliary function g∗:

Lemma 4.1 Let s ∈ (1
2
, 1], let function g belong to the Sobolev-Slobodetskĭı space

Hs(Γi)
2, and let g(A1) = g(A0) (where A0 and A1 are the end points of Γi). Then

there exists a constant cg > 0 independent of g and a divergence-free extension
g∗ ∈ H1(Ω)2 of function g from Γi onto Ω such that g∗ = 0 on Γw, g∗ satisfies the
condition of periodicity

g∗(x1, x2 + τ) = g∗(x1, x2) for (x1, x2) ∈ Γ− (9)

and the estimate ‖g∗‖H1(Ω)2 ≤ cg ‖g‖Hs(Γi)2 . (10)

The lemma is proved in [2].
The weak solution u of the problem (1)–(8) can be constructed in the form

u = g∗ + z where z ∈ V is a new unknown function. This form of u guarantees
that u satisfies the boundary condition (3) on the part Γi of ∂Ω.

In order to arrive formally at the weak formulation of the problem (1)–(8), we
multiply equation (1) by an arbitrary test function v = (v1, v2) ∈ V , integrate over Ω,
apply Green’s theorem, and use the condition of incompressibility (2), the boundary
condition (4), the conditions of periodicity (5)–(7), and the nonlinear condition (8).
We obtain an equation, which can be written down in the form

a(u,v) = (f , v) + b(h,v), (11)

with a(u,v) := a1(u,v) + a2(u, u,v) + a3(u,u,v) and b(h,v) := − ∫
Γo

h · v dS,
where

a1(u,v) := ν

∫

Ω

∇u : ∇v dx, a2(u,v,w) :=

∫

Ω

u · ∇v ·w dx,

a3(u,v,w) :=

∫

Γo

1

2
(u · n)− v ·w dS, (f , v) :=

∫

Ω

f · v dx.

All these forms are defined for u, v, w ∈ V , f ∈ L2(Ω)2 and h ∈ L2(Γo)
2. Thus, we

arrive at the definition:
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Definition 4.2 Let g ∈ Hs(Γi)
2 (for some s ∈ (1

2
, 1]) satisfy the condition g(A1) =

g(A0). Let f ∈ L2(Ω)2 and h ∈ L2(Γo)
2. The weak solution of the problem (1)–(8)

is the vector function u := g∗+ z, where z ∈ V and u satisfies the identity (11) for
all test functions v ∈ V .

The next theorem brings the information on the existence of a weak solution u.

Theorem 4.3 There exists ε > 0 such that if ‖g‖Hs(Γi)2 < ε then there exists a so-
lution u = g∗+ z of the problem defined in Definition 4.2. Moreover, z satisfies the
estimate

|||z||| ≤ R1, (12)

where R1 = R1

(
ν, ‖g‖Hs(Γi)2 , ‖f‖L2(Ω)2 , ‖h‖L2(Γo)2

)
. Consequently, u satisfies

‖∇u‖L2(Ω)4 ≤ R1 + ‖∇g∗‖L2(Ω)4 ≤ R1 + cg ‖g‖Hs(Γi)2 =: R2. (13)

The proof can be found in [2]. The function u has the form g∗ + z, where z ∈ V
satisfies

a(g∗ + z, v) = (f ,v) + b(h,v)

for all v ∈ V . The function z was constructed as a limit of an appropriate sequence
of Galerkin approximations. We were able to find an explicit form of the dependence
of R1 on ν, ‖g‖Hs(Γi)2 , ‖f‖L2(Ω)2 and ‖h‖L2(Γo)2 in [2]. The restriction ‖g‖Hs(Γi)2 < ε
follows from the requirement that the form a is coercive.

5. Uniqueness of the weak solution of the problem (1)–(8)

The next theorem presents the main result of this paper. It says that the weak
solution u of the problem (1)–(8) is unique in a certain sufficiently small ball.

Theorem 5.1 (on uniqueness of the weak solution) There exists R > 0 such
that if u1 and u2 are two weak solutions of the problem (1)–(8) defined in Definition
4.2 such that ‖∇u1‖L2(Ω)4 ≤ R and ‖∇u2‖L2(Ω)4 ≤ R, then u1 = u2.

Proof. Since u1 and u2 are weak solutions of problem (1)–(8), they satisfy the
equations

a(u1,v) = (f ,v) + b(h, v),

a(u2,v) = (f ,v) + b(h, v)

for all v ∈ V . Subtracting these equations, we get a(u1,v)− a(u2,v) = 0.
Expressing the bilinear form a by means of forms a1, a2 and a3 with v = u1 − u2,
we obtain

a1(u1 − u2,u1 − u2) + a2(u1,u1, u1 − u2)− a2(u2,u2, u1 − u2)

+ a3(u1,u1, u1 − u2)− a3(u2,u2,u1 − u2) = 0. (14)
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If we denote

I1 := a1(u1 − u2,u1 − u2) = ν

∫

Ω

|∇(u1 − u2)|2 dx = ν |||u1 − u2|||2,

I2 := a2(u1,u1,u1 − u2)− a2(u2,u2,u1 − u2),

I3 := a3(u1,u1,u1 − u2)− a3(u2,u2,u1 − u2),

then (14) takes the form
I1 = −I2 − I3. (15)

Further, we estimate the terms on the right-hand side of (15).

|I2| =

∣∣∣∣
∫

Ω

u1 · ∇u1 · (u1 − u2) dx −
∫

Ω

u2 · ∇u2 · (u1 − u2) dx

∣∣∣∣

≤
∣∣∣∣
∫

Ω

(u1 − u2) · ∇u1 · (u1 − u2) dx

∣∣∣∣ +

∣∣∣∣
∫

Ω

u2 · ∇(u1 − u2) · (u1 − u2) dx

∣∣∣∣
≤ ‖u1 − u2‖2

L4(Ω)2 ‖∇u1‖L2(Ω)4 + ‖u2‖L4(Ω)2 ‖∇(u1 − u2)‖L2(Ω)4 ‖u1 − u2‖L4(Ω)2

≤ 2c2
1 R ‖∇(u1 − u2)‖2

L2(Ω)4 = 2c2
1 R |||u1 − u2|||2, (16)

where the constant c1 comes from the inequality ‖u‖L4(Ω)2 ≤ c1 ‖∇u‖L2(Ω)4 (which
can be found in [3]) for functions u from H1(Ω)2. The term I3 equals

I3 =

∫

Γo

1

2
(u1 · n)− u1 · (u1 − u2) dS −

∫

Γo

1

2
(u2 · n)− u2 · (u1 − u2) dS.

According to the signs of u1 · n and u2 · n on Γo, we must split Γo into four parts
Γo = Γo1 ∪ Γo2 ∪ Γo3 ∪ Γo4, where

(a) u1 · n ≥ 0, u2 · n ≥ 0, (u1 · n)− = 0, and (u2 · n)− = 0 on Γo1;

(b) u1 · n < 0, u2 · n ≥ 0, (u1 · n)− = u1 · n, and (u2 · n)− = 0 on Γo2;

(c) u1 · n ≥ 0, u2 · n < 0, (u1 · n)− = 0, and (u2 · n)− = u2 · n, on Γo3;

(d) u1 · n < 0, u2 · n < 0, (u1 · n)− = u1 · n, and (u2 · n)− = u2 · n on Γo4.

Let us denote by Io1
3 , Io2

3 , Io3
3 , and Io4

3 the same integrals as in I3, but this time
considered successively on Γo1, Γo2, Γo3, and Γo4. Obviously, Io1

3 = 0 because the
integrands are equal to zero on Γo1. On Γo2 we use the inequality |u1 ·n| ≤ |u1 ·n−
u2 · n|, which holds because u1 · n < 0 and u2 · n ≥ 0. We obtain

|Io2
3 | =

∣∣∣∣
∫

Γo2

(u1 · n)−u1 · (u1 − u2) dS

∣∣∣∣ ≤
∫

Γo2

|u1 · n− u2 · n| |u1| |u1 − u2| dS

≤
∫

Γo2

|u1 − u2|2 |u1| dS ≤ ‖u1 − u2‖2
L4(Γo2)2 ‖u1‖L2(Γo2)2

≤ ‖u1 − u2‖2
L4(Γo)2 ‖u1‖L2(Γo)2 ≤ c2 ‖u1 − u2‖2

H1(Ω)2 ‖u1‖H1(Ω)2

≤ c3 |||u1 − u2|||2 ‖∇u1‖L2(Ω)4 ≤ c3 R |||u1 − u2|||2, (17)
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where the constants c2 and c3 come from the inequalities ‖u‖L2(Γo)2 ≤ c2 ‖u‖H1(Ω)2 ≤
c3 ‖∇u‖L2(Ω)4 (which can be found in [3]) for functions u from H1(Ω)2. The term Io3

3

can be estimated in the same way as Io2
3 . The term Io4

3 can be treated as follows

|Io4
3 | =

∣∣∣∣
∫

Γo4

(u1 · n) u1 · (u1 − u2) dS −
∫

Γo4

(u2 · n) u2 · (u1 − u2) dS

∣∣∣∣

=

∣∣∣∣
∫

Γo4

[(u1 − u2) · n] u1 · (u1 − u2) dS +

∫

Γo4

(u2 · n) (u1 − u2) · (u1 − u2) dS

∣∣∣∣

≤
∫

Γo4

|u1 − u2| |u1| |u1 − u2| dS +

∫

Γo4

|u2| |u1 − u2| |u1 − u2| dS

≤ ‖u1 − u2‖2
L4(Γo4)2

(‖u1‖L2(Γo4)2 + ‖u2‖L2(Γo4)2
)

≤ ‖u1 − u2‖2
L4(Γo)2

(‖u1‖L2(Γo)2 + ‖u2‖L2(Γo)2
)

≤ c4 ‖∇u1 −∇u2‖L2(Ω)4 c3

(‖∇u1‖L2(Ω)4 + ‖∇u2‖L2(Ω)4
) ≤ 2c4 |||u1 − u2|||2 c3 R,

where the constant c4 comes from the inequality ‖u‖L4(Γo)2 ≤ c4 ‖∇u‖L2(Ω)4 (which
can be found in [3]) for functions u from H1(Ω)2. Substituting from (16), (17) and
from the last inequality into (15), we obtain

ν |||u1 − u2|||2 ≤ (2c2
1 + 2c3 + 2c3c4) R |||u1 − u2|||2.

Now it is seen that if R is so small that ν > (2c2
1 + 2c3 + 2c3c4) R then u1 = u2.

This proves the theorem. ¤
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REMARKS ON THE ECONOMIC CRITERION – THE INTERNAL
RATE OF RETURN∗

Carmen Simerská

Abstract

The internal rate of return (IRR) together with the present value (PV) is used as
a popular measure for financial project. When used appropriately, it can be a valuable
aid in project acceptance or selection. The purpose of this article is to survey the facts
about this criterion published so far. More, we investigate the cases of multiple or
nonexistent IRRs and try to choose the relevant one and explain its economic meaning.

1. Introduction

The internal rate of return (IRR) is frequently used as a valuation for investment
transactions and financial securities described by a sequence of cash flows in time.
We are interested in the existence, uniqueness or multiplicity of the IRR solutions.
The IRR can be unambiguously used in decision making if it is unique and simple.

From time to time, the question of how we should find and interpret the IRRs,
that are not unique and simple, appears among economists or even mathematicians.
This was the case in the 1990’s: The Canadian Institute of Actuaries came up with
the problem of IRR uniqueness when trying to clarify a section of the Canadian crim-
inal code which made it offense to lend money at an effective interest rate exceeding
60% p.a., see [10]. In the Czech legislation, there is currently a law requiring that all
providers of consumer loans include the Annual percentage rate of charge (APRC)
in the loan conditions. APRC (in Czech: RPSN) is defined to be a solution of the
equation

J∑
j=0

Ctj

(1 + i)tj
= 0,

for unknown i, where Ct0 , . . . , CtJ are the cash flows, positive or negative, of the loan
in time terms tj (including all related costs of the loan to the client: fees, etc.). There
are no restrictions on the APRC value but unfortunately, the law includes also loans,
the advances and repayments which alternate in time (e.g. when an application fee
is considered as a repayment of the loan before the loan is received). In these cases,
the loans can have multiple APRC’s, APRC being a double root, or not existing at
all.

∗This work was supported by the project MSM 413/05/0608 of the Ministry of Education, Youth
and Sports of the Czech Republic.
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2. Basic notions

Let us consider a project B = (B0, . . . , Bn), B0 6= 0, Bn 6= 0, i.e. a sequence of
equally spaced (periodic) cash flows B0, . . . , Bn. Given the estimated market rate
of interest i per period, at which the money may be borrowed or invested, a usual
procedure is to accept the project if its present value

PV (i) = PV (B, i) =
n∑

k=0

Bk

(1 + i)k

is greater than zero.
An internal rate of return (IRR) i∗, i∗ ∈ (−1,∞), attached to the project B can

be defined by three equivalent definitions:

• i∗ is the root of the present value function PV (B, i), i.e. PV (B, i∗) = 0.

• i∗ =
1

ν∗
− 1, where ν∗ ∈ (0,∞) is the root of the polynomial g(ν) =

n∑
k=0

Bkν
k.

• i∗ = x∗−1, where x∗ ∈ (0,∞) is the root of the polynomial h(x) =
n∑

k=0

Bkx
n−k .

Many applications require only positive IRRs; these correspond to the roots of g(ν)
in the interval (0, 1) and to the roots of h(x) in the interval (1,∞) .
Notes:

– IRR is the rate that equalizes time value of expected earnings and the invest-
ment outlays of the project. When unique, IRR defines the marginal value
of interest rates (the efficiency of capital or the cost of loan) for which PV is
nonnegative. Evidently, multiple or double IRRs can potentially occur.

– The value of PV (B, i) is an absolute criterion of the project. It is dependent
on the size of the cash flows as opposed to the value and number of IRRs,
which depend on the cash flows structure.

– The function PV (i) is a continuous (and differentiable) function of the rate i.
The IRRs, i.e. the roots of polynomials, are not continuous function of their
coefficients B0, . . . , Bn, e.g., when one of the IRRs is double, a small change
of a cash flows can cause the double root to disappear. In case of multiple
IRRs, any numerical method to calculate them (Newton, Bairstow) can run
into difficulties.

– Every finite sequence of cash flows C = (Ct0 , . . . , CtJ ), e.g. of an arbitrary loan,
can always be considered as a periodic (e.g. daily) project B = (B0, . . . , Bn)
(simply putting: Bk = 0 in the days with no flow). Then APRC is the effective
annualized IRR of the corresponding B n-year period, APRC = (1+ i∗)365−1.

– When studying the behaviour of PV and IRR, it may be assumed, without
loss of generality, that B0 < 0, i.e the project requires an initial outlay. Sign
reverse/identical results may be produced in the case, where the project has
an initial income.
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If the present value PV (i) of the project is a monotonous function in (−1,∞)
(most loans) and if there exists an IRR, then it is unique. Subsequently, for decision
making the IRR can be simply compared to the usual opportunity cost of capital
(market interest rate) to accept or reject the project. The application of this IRR
criterion becomes problematic if PV is not monotonous and/or the IRR does not
exist (i∗ < −1 or complex-valued) or if there are too many of them. Evidently, the
uniqueness of IRR does not imply monotonicity of PV .

3. Conditions for existence and uniqueness of IRR

In the 1970’s, great effort was directed to obtain sufficient conditions for deter-
mining a unique IRR. Some “new” rules were reproved by means of old mathematical
facts dealing with the roots of polynomials. We present a brief survey of the local-
ization rules with the corresponding references.
Assuming B0 < 0, it is easy to verify:

• Bn > 0 ⇒ exists IRR in (−1,∞).

• PV (0) > 0 ⇒ exists IRR in (0,∞).

(PV (0) =
n∑

k=0

Bk > 0 is the minimum economic convenience of investment.)

The number and uniqueness of IRR in an interval can be guaranteed by means of
the number of sign-changes in certain sequences S .

• Descartes theorem, S = {B0, . . . , Bn}.
Corollary: Exactly one sign change in S implies a unique IRR.

• Budan-Fourier theorem, S = {g(ν), g′(ν), . . . , g(n)(ν)} → Jean’s rule [6].

• Soper’s theorem [11], S = {B0, B0 + B1, . . . ,
∑n

k=0 Bk} → Norstrom’s rule
[8]. Corollary: Exactly one sign change in S implies a unique positive IRR.

• Vincent’s theorem, S is the diagonal of Vincent’s matrix → Bernhard-de Faro
condition for non-negative IRRs [2], [1].

• Sturm’s theorem, S results from the Euclid’s algorithm applied to the polyno-
mial g → Kaplan’s rule, exact number of IRRs ignoring multiplicity [7].

It is worth giving here in more details the Soper-Gronchi (S-G) conditions, the only
ones that have a meaningfull economic interpretation. First, for the given project B
and i ∈ (−1,∞), we define the project balance stream A(i) = (a0(i), . . . , an−1(i)) ,
where the unrecovered financial balances are the functions

am(i) =
m∑

k=0

Bk(1 + i)m−k, m = 0, . . . , n− 1.
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This definition comes form [10]. The balances are given equivalently by the
relations

B0 = a0(i) , Bm = am(i)− (1 + i)am−1(i), m = 1, . . . , n− 1 .

• Assuming any value i∗ of the project IRRs was found, Soper [11] and Gronchi [3]
stated the sufficient (not necessary) conditions

am(i∗) ≤ 0 , ∀m = 0, . . . , n−1 , (S-G)

for the IRR value to be unique.

We recommend the following proposition that is more practical for determining
the uniqueness of IRR without IRR computation.

If for a given r ∈ (−1,∞) the conditions: am(r) ≤ 0 , ∀m = 0, . . . , n − 1 , are
valid and PV (r) > 0, then there exists a unique IRR i∗ of the project and i∗ > r .

Gronchi called the rate i∗ for which (S-G) conditions are valid pure lending rate.
It means that the investor does not borrow from the project at any time during
its project life and only recovers its investment at the end, earning the interest i∗.
The i∗ of the project that has at least one period m with the balance am(i∗) > 0
should be regarded as a lending rate and also as a borrowing rate, to be paid (still
by the investor) on the balance financed by the project. Then using the IRR of
ambiguous meaning for this mixed project becomes questionable.

It was also shown that a direct comparison of the IRRs i1 and i2 of various
projects B1,B2 for the purpose of ranking is not recommendable. When i1 > i2
and both are lending rates, project B1 should be preferable. But B2 is preferable
if i1 and i2 are regarded as the borrowing ones (the lower borrowing rate is better).
Hajdasinski, e.g. in [4], deals with the comparison of mutually exclusive projects by
means of the IRR using the method of incremental approach. The comparison of
multiple IRRs projects is an unresolved problem so far.

4. Nonuniqueness of IRR

The multiplicity or not real-values of IRR have been regarded as a fatal defect
for the IRR criterion. Many objections for using IRR as a criterion of the project
have been expressed till now and to use only PV criterion was often proposed. But
Oehmke in [9] shows that in exactly those projects that may give either none or
multiple IRRs the PV criterion exhibits anomalous behaviour as well. E.g., there
are investment projects, where PV can be an increasing function in some interval, see
Fig. 1. The use of market interest rate im smaller than the lower evaluated IRR may
reduce the calculated PV . In order to investigate the cases of IRR nonuniqueness,
it is useful to decompose a project by means of the proposition (e.g. [3]):

Given a project B and a rate of interest r, there exists a set of consecutive finan-
cial operations
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{Am, −(1 + r)Am} , m = 0, . . . , n− 1 ,

where Am = am(r) are the values of balances attached to B and Bn = −(1 + r)An−1,
if and only if r is an IRR of the project. Moreover, given B and r the set is unique.

I.e., an IRR is an interest rate i∗ uniformly applied to the single-one operations
{B0, −(1 + i∗)B0} , {A1, −(1 + i∗)A1}, . . . , {An−1, Bn} , into which a project can be
uniquely decomposed. Then instead of B we can deal with any balance stream A(i∗).

Hazen in [5] generalized the notion of IRR of the project B to any root i∗ of PV
(possibly complex-valued). Then B can always be interpreted as a result of (possibly
complex-valued) balance stream A(i∗) for any i∗. Using the known equation

PV (B, i) =
i− i∗

1 + i
PV (A(i∗), i) ,

for a given interest rate i, he proved the following implications:

(a) If PV (Re(A(i∗)), i) < 0 then PV (B, i) ≥ 0 ⇔ Re(i∗) ≥ i .

(b) If PV (Re(A(i∗)), i) > 0 then PV (B, i) ≥ 0 ⇔ Re(i∗) ≤ i .

From his point of view, it does not matter which IRR is used to accept or reject the
project. Every IRR is meaningful. All what is important is whether IRR exceeds
the market rate i = im. The magnitude of i∗ by itself is not significant.

When treating the problem of multiplicity, we take into account that the project
(e.g. Fig. 1) can behave differently depending on the market rate im used. For
some investor the same project can be rejected as an investment and for a borrower
at different im rejected as a loan. Therefore, the project cannot be defined as an
investment or as a loan unless im is specified. It is natural to determine the intervals of
monotonicity (−1, r1〉 , . . . , 〈rk, rk+1〉 , . . . , 〈rK ,∞) , where K < n , i.e the intervals
between the extremal points rk of the function PV .

We call such an interval I the investment (or loan) interval of the project if

∂PV

∂i
(i) =

n∑

k=1

−kBk

(1 + i)k+1
≤ 0

(
or

∂PV

∂i
(i) ≥ 0

)
∀i ∈ I.

When im ∈ I, the type of relevant interval is given. If im = rk, it does not
matter which interval, right or left, we choose. Moreover, in case i∗ ∈ I (at most
one IRR) we take it as the relevant IRR with respect to im. The significance of
this i∗ corresponds to the investment (loan) interval I . When investment, we accept
(reject) the whole project if i∗ ≥ im ( i∗ ≤ im ). (When loan, then vice versa.)

In the case when no IRRs are in I, we accept the project if PV is positive at the
endpoints of the interval I, regardless of the magnitudes of the IRRs of the project,
see Fig. 2. The presence of complex roots means the sign of derivative changes twice
without crossing the i axis.)
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Fig. 1: Anomalous project P1.
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Fig. 2: Project P2, unique IRR.

B0 B1 B2 B3 B4 B5 IRR[%]

P1 -815 900 -100 1200 -1200 0 4.5 ; 12.3
P2 -77 340 -470 252 -110 69 -108.5± 53.7 i ; 15.1± 6.9 i ; 128.2

5. Conclusions

The problem of rating the project has been substantially simplified with the
help of computers graphing the function PV and by means of special software tools
(Maple, Mathematica), which can provide all existing (even complex-valued) roots.
But how the financial manager should deal with a project when the symbolic pro-
grams are not available? When the cash flows have multiple sign changes, several
spreadsheet calculators tend to give “ERR” (an error message) instead of IRR.

Before any calculation one should ask about the uniqueness of the IRR because
if it is unique the decision making is straightforward. We found the (S-G) conditions
very strong for determining the uniqueness, though they have reasonable economic
meaning. There are a lot of projects with the monotonic PV and unique IRR that
do not fulfill the (S-G) conditions.

When multiplicity occurs, the IRRs should not be compared even within a single
project. Every real IRRs are significant, some are the measures for the investment
return and others have the economic meaning as the cost of loan. If the market
rate im is specified, the project follows the type of corresponding interval. As an
investment decision tools, the IRR and PV are coherent criteria. Together give
a better analysis than the former or the latter alone.
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ON CONSTRUCTION OF THE COARSE SPACE
IN THE BDDC METHOD∗

Jakub Š́ıstek, Pavel Burda, Marta Čert́ıková, Jaroslav Novotný

1. Introduction

Domain Decomposition (DD) methods are getting increasingly popular in various
areas of engineering for offering a convenient way to parallelize analysis by the finite
element method (FEM). Among the most popular members of this family for sym-
metric positive definite problems, such as linear elasticity, are the FETI-DP method
of Farhat et al. [3] and the BDDC method of Dohrmann [1]. It has been recently
proved by Mandel, Dohrmann, and Tezaur [5] that the two methods are spectrally
equivalent, which unifies the theory for both methods and allows application of var-
ious results already known for FETI-DP to BDDC and vice versa.

Both methods use a coarse space based on a set of selected nodes, called corners,
in which the continuity of subdomain solutions is required. These nodes assure that
the subdomain problems are also positive definite and might be solved by a standard
direct method. The set of corners gives rise to an important part of the coarse space
and the corresponding coarse problem.

While corners assure a convenient solvability of subdomain problems, they do
not suffice for robust preconditioning with respect to discretization parameter h in
three dimensions. This fact was first observed for FETI-DP experimentally in [3], and
theoretically in [4]. The theoretical treatment requires adding constraints on equality
of averages over subdomain edges and faces to the coarse problem. This might be
done in a uniform way (as was done in [1, 2]), or in a more sophisticated adaptive
way, which nearly optimally decreases the condition number of the preconditioned
operator (see [6]).

In the present paper, we investigate different and more straightforward approach
to the generation of coarse space, that consists of simple addition of more nodes from
the interface to the set of corners. Although this is not the optimal case, presented
numerical experiments for an industrial application of linear elasticity show that
combining both approaches can lead to synergic effect and further reduce the overall
computational time.

∗This work was supported by grant No. 106/08/0403 of the Czech Science Foundation.
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2. The Schur complement method

Consider a boundary value problem with self-adjoint operator defined on domain
Ω ⊂ R2 or R3. If we discretize the problem by means of the standard finite element
method (FEM), we arrive at the solution of system of linear equations in the matrix
form

Ku = f , (1)

where K is a large, sparse, symmetric positive definite (SPD) matrix and f is the
vector of right-hand-side.

Let us decompose domain Ω into N non-overlapping subdomains Ωi, i = 1, . . . , N .
Unknowns common to at least two subdomains are called boundary unknowns and
the union of all boundary unknowns is called the interface. Remaining unknowns
belong to subdomain interiors.

The first step is the reduction of the problem to the interface. Without loss of
generality, suppose that unknowns are ordered so that interior unknowns form the
first part and the interface unknows form the second part of the solution vector, i.e.

u =
[

uo û
]T

, where uo stands for all interior unknowns and û for unknowns at
interface. System (1) can now be formally rewritten to block form

[
Koo Kor

Kro Krr

] [
uo

û

]
=

[
fo
f̂

]
. (2)

The hat symbol (̂) is used to denote global interface quantities. If we suppose the
interior unknowns ordered subdomain after subdomain, then the submatrix Koo is
block-diagonal with each diagonal block corresponding to one subdomain.

After eliminating all the interior unknowns from (2), we arrive to Schur comple-
ment problem for the interface unknowns

Ŝ û = ĝ, (3)

where Ŝ = Krr −KroK
−1
oo Kor is a Schur complement of (2) with respect to interface

and ĝ = f̂ − KroK
−1
oo fo is sometimes called condensed right hand side. Interior

unknowns uo are determined by interface unknowns û as

Koouo = fo −Korû. (4)

The solution can now be divided into three steps: (i) construction of problem (3),
(ii) solution of problem (3), and (iii) resolution of interior unknowns by (4). Because
problem (4) represents N independent subdomain problems with Dirichlet boundary
condition prescribed on the interface, steps (i) and (iii) are performed in parallel
and are very fast. Thus, the main concern represents the solution of problem (3) in
step (ii). This problem is solved by the preconditioned conjugate gradient method
(PCG). Since only matrix-vector multiplications are necessary in PCG, the Schur

complement matrix Ŝ need not be constructed explicitly. Instead, we only need to

178



factorize the block Koo and perform the multiplications with Ŝ as Ŝv̂ = Krrv̂−Krow,
where Koow = Korv̂. Also this process may be performed subdomain by subdomain
in parallel, using blocks of local subdomain matrices Ki defined in the next section.

3. The BDDC method

The BDDC method may be viewed as a preconditioner for problem (3) when it
is solved by the PCG method. The main idea of the preconditioner is to split the
problem into independent subdomain problems and the global coarse problem. This
process is described in this section.

Let Ki be the local subdomain matrix obtained by the sub-assembling of element
matrices of elements contained in subdomain Ωi. The global stiffness matrix K might
be obtained by further assembling of these matrices on the interface. We introduce
the coarse space basis functions on each subdomain Ωi represented by columns of
matrix Ψi, which is the solution to the saddle point problem with multiple right
hand sides [

Ki CT
i

Ci 0

] [
Ψi

Λi

]
=

[
0
I

]
. (5)

This is a key problem in the BDDC method and deserves a careful explanation.
Matrix Λi is a block of Lagrange multipliers, I is an identity block.

Matrix Ci represents constraints on functions Ψi, one row per each. These con-
straints enforce prescribed values of the coarse degrees of freedom on subdomain.
They guarantee continuity of solution in selected points (corners) or equality of av-
erages over some subsets of interface (edges or faces) of adjacent subdomains. While
the former type of constraints corresponds to exactly one nonzero entry in a row
of Ci, the latter leads to several nonzeros in a row. Each column of matrix Ψi

defined by (5) represents one coarse space basis function on subdomain Ωi and cor-
responds to one local coarse degree of freedom.

Using the coarse basis functions Ψi, we define the local coarse matrix KCi =
ΨT

i KiΨi on each subdomain. This matrix has the dimension equal to the number
of constraints for each subdomain.

Let RCi realize the restriction of global coarse degrees of freedom to local coarse
degrees of freedom on subdomain Ωi. Using this matrix, we can construct the global
coarse matrix by the assembling procedure, formally written as

KC =
N∑

i=1

RT
CiKCiRCi. (6)

We are ready to describe the algorithm of the BDDC method. Suppose r̂ = ĝ−Ŝ û
is a residual within the PCG method. Let us define matrices ET

i for distribution
of r̂ to subdomains. Each matrix selects the interface unknowns of subdomain Ωi

and weights them so that the decomposition of unity applies to the residual across
subdomains. It puts zeros to unknowns interior to subdomains. This corresponds
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to computing with Schur complement (see [7] for details). The residual assigned to
subdomain Ωi is computed as ri = ET

i r̂. The subdomain correction from Ωi is now
defined as the solution to system

[
Ki CT

i

Ci 0

] [
zi

λi

]
=

[
ri

0

]
. (7)

The residual for the coarse problem is constructed using the coarse basis functions
subdomain by subdomain and assembling the contribution as

rC =
N∑

i=1

RT
CiΨ

T
i ET

i r̂. (8)

The coarse correction is defined as the solution to problem

KC zC = rC . (9)

Both corrections are then added together and averaged on the interface by matri-
ces Ei to produce the preconditioned residual

ẑ =
N∑

i=1

Ei (ΨiRCizC + zi) . (10)

Properties of the coarse space are fully determined by constraints in matrices Ci.
The more constraints are prescribed, the more efficient preconditioner is constructed,
but the larger coarse space is obtained, making factorization of matrix KC more
expensive.

4. Numerical results

We investigate the two ways of constructing the coarse space on a problem of
elasticity analysis of a turbine nozzle, through which the steam enters the turbine
blades. The geometry is discretized using 2 696 quadratic elements, which leads
to 13 418 nodes and 40 254 unknowns. The mesh was divided into 16 and 32 sub-
domains, respectively. The division into 16 subdomains is depicted in Figure 1.
Presented calculations were performed on 16 processors of SGI Altix 4700 computer
of Supercomputing Centre of Czech Technical University in Prague.

The first experiment consists in adding more interface nodes to the set of corners.
It should be noted that the initial set of corners is already sufficient for all subdomain
problems to be nonsingular, as well as the coarse problem. In Figure 2, we present
the plot of number of PCG iterations with respect to the number of corners. The
effect on condition number is presented in Figure 3.

We can observe from these plots that some initial amount of corners is necessary
for fast decrease of these values, while from some amount, these values behave quite
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linearly in dependence on number of corners. These points of break are quite impor-
tant, because they correspond to the optimal values of wall clock times presented in
Figure 4. This is caused by the fact that the number of PCG iterations decreases
rapidly at this point, while for adding more corners, the factorization of the growing
coarse problems starts to dominate the time. Thus, it is desirable to set-up the
preconditioner in such a way, that it works around this point or slightly to the right.
The problem is that this point is unknown a priori. For the turbine nozzle, it cor-
responds to approximately 20 percent of all interface nodes for 16 subdomains and
to 25 percent for the case of 32 subdomains. Similar results were also observed for
other industrial problems. Although this value highly depends on problem topology
and division into subdomains, from the practical point of view it seems that putting
as much as a quarter of interface nodes into the set of corners is a reasonable set-up.

In the second experiment, we vary the size of the coarse problem in a conceptually
different way – besides the continuity at corners, we enforce the equality of arithmetic
averages of the approximate solution on all edges, on all faces, and on both edges
and faces.

The results for the division into 16 subdomains are summarized in Table 1 for
the initial set of 30 corner nodes, and in Table 2 for 280 corner nodes, the optimal
number determined in the first experiment.

We can observe that adding constraints on averages can significantly improve the
preconditioner and decrease the computational time. However, averages on faces
might be too expensive considering time of computation. It could also be seen from
the tables that using the optimal number of corner nodes can lead to improvement
of computational times after addition of averages on edges.

5. Conclusion

We have presented a comparison of two ways for generating the coarse space in the
BDDC method. We can conclude that while adding averages over edges and faces

Fig. 1: Turbine nozzle, division into 16 subdomains.
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coarse problem corners corners+edges corners+faces corners+edges+faces

iterations 98 78 41 36
cond. number est. 2 933 1 546 164 142

factorization (sec) 0.5 0.6 0.6 0.8
pcg iter (sec) 4.6 3.7 1.9 1.9

total (sec) 5.3 4.5 2.8 2.9

Tab. 1: Turbine nozzle, 16 subdomains, 30 corners, adding averages.

coarse problem corners corners+edges corners+faces corners+edges+faces

iterations 29 26 26 23
cond. number est. 36 23 25 13

factorization (sec) 1.2 1.1 1.5 1.8
pcg iter (sec) 1.9 1.6 1.7 1.8

total (sec) 3.6 2.9 3.5 3.8

Tab. 2: Turbine nozzle, 16 subdomains, 280 corners, adding averages.
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is often applied in literature, addition of more corners might be also contributive
and the best results are likely to be obtained by combination of both approaches.
According to our observations, there is an optimal number of corner nodes, with
a steep decrease of number of iterations followed by the lowest computational time.
Constraints on averages over faces might be too expensive compared to averages over
edges. These observations advocate the adaptive approach for selecting constraints
described in [6].

References

[1] C.R. Dohrmann: A preconditioner for substructuring based on constrained energy
minimization. SIAM J. Sci. Comput. 25 (2003), 246–258.

[2] C. Farhat, M. Lesoinne, P. Le Tallec, K. Pierson, D. Rixen: FETI-DP: a dual-
primal unified FETI method. I. A faster alternative to the two-level FETI method.
Internat. J. Numer. Methods Engrg. 50 (2001), 1523–1544.

[3] C. Farhat, M. Lesoinne, K. Pierson: A scalable dual-primal domain decomposition
method. Numer. Linear Algebra Appl. 7 (2000), 687–714.

[4] A. Klawonn, O. B. Widlund, M. Dryja: Dual-primal FETI methods for three-
dimensional elliptic problems with heterogeneous coefficients. SIAM J. Numer.
Anal. 40 (2002), 159–179.

[5] J. Mandel, C.R. Dohrmann, R. Tezaur: An algebraic theory for primal and dual
substructuring methods by constraints. Appl. Numer. Math. 54 (2005), 167–193.

[6] J. Mandel, B. Soused́ık: Adaptive selection of face coarse degrees of freedom in
the BDDC and the FETI-DP iterative substructuring methods. Comput. Methods
Appl. Mech. Engrg. 196 (2007), 1389–1399.
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SPACE-TIME ADAPTIVE hp-FEM:
METHODOLOGY OVERVIEW∗

Pavel Šoĺın, Karel Segeth, Ivo Doležel

Abstract

We present a new class of self-adaptive higher-order finite element methods
(hp-FEM) which are free of analytical error estimates and thus work equally well for
virtually all PDE problems ranging from simple linear elliptic equations to complex
time-dependent nonlinear multiphysics coupled problems. The methods do not con-
tain any tuning parameters and work reliably with both low- and high-order finite
elements. The methodology was used to solve various types of problems including
thermoelasticity, microwave heating, flow of thermally conductive liquids etc. In this
paper we use a combustion problem described by a system of two coupled nonlin-
ear parabolic equations for illustration. The algorithms presented in this paper are
available under the GPL license in the form of a modular C++ library HERMES1.

1. Introduction

Partial differential equations (PDEs) describe many physical processes whose pre-
diction and control are important to people. The most frequently used technique for
the numerical solution of PDEs is the finite element method (FEM). The origins of
this method are often associated with R. Courant [2] who solved numerically torsion
problems in cylinders, drawing on a large body of earlier results for PDEs developed
by Rayleigh, Ritz, and Galerkin. Since the 1940s, the method achieved a high degree
of maturity and also the computational standards have changed. Nowadays, the sig-
nificance of error control is greater than ever before, and the number of computations
where adaptive mesh refinement algorithms are employed is rising very quickly.

On the other hand, self-adaptive finite element methods for PDEs have been
studied by mathematicians for decades but so far, practitioners have been rather re-
luctant to use them. To understand why, note that every self-adaptive finite element
method is guided by an error estimator. With a suitable error estimator in hand,
the rest of automatic adaptivity (such as mesh refinement) is a purely technical mat-
ter. The current standard in computational PDEs are analytical error estimators –
mathematical formulae “on paper”. However, there is a very large number of such
formulae, often they contain simplifying assumptions, are restricted to numerical

∗This work was supported by grant 102/07/0496 of the Czech Science Foundation, grants
IAA100190803 and IAA100760702 of the Grant Agency of the Academy of Sciences of the Czech
Republic, Research Plan of the Academy of Sciences of the Czech Republic AV0Z10190503, and by
Research Center 1M4674788502 of the Ministry of Education, Youth, and Sports.

1See the home page of the HERMES project http://spilka.math.unr.edu/hermes/.
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methods of low order of accuracy, involve constants of unknown size, and/or include
problem-dependent parameters that need to be tuned. In general, analytical error
estimators are neither simple to use nor universal enough to cover a wide spectrum of
problems of interest to practitioners. One cannot use them efficiently without a deep
understanding of the underlying mathematics. From the point of view of a prac-
titioner whose expertise is elsewhere and who would like to solve PDEs routinely,
in order to obtain information that he or she needs for his research or application,
the cost of dealing with burdens associated with self-adaptive methods often is not
acceptable.

In this paper, we propose a way to circumvent this problem and make self-
adaptive computational methods easily accessible to the broad computational com-
munity. The main idea of our approach is to use universal, computational error
estimators that are motivated by modern embedded self-adaptive methods for ordi-
nary differential equations (ODEs). These ODE methods are highly popular among
engineers and practitioners due to their simplicity and universality: In every step,
the algorithm computes two approximations with different orders of accuracy, and
the error is estimated by their difference. Note that such error estimator is vir-
tually independent of the underlying equation. The key requirement for practical
applicability, however, is that the two approximations are computed efficiently. For
example, in embedded Runge-Kutta RK2(3) methods, one evaluates two stages to
obtain a second-order accurate approximation, and adds one more stage to obtain
an approximation that is third-order accurate. Hence, one only pays the cost of
a third-order method but also obtains a second-order error estimator.

The outline of the paper is as follows: In Sections 2 and 3 we present two tech-
niques which are essential for the space-time adaptive algorithms: conforming higher-
order approximation with arbitrary-level hanging nodes and the multimesh hp-FEM.
In Section 4 we present a universal adaptivity algorithm for higher-order finite ele-
ment methods. In Section 5 we extend this technique to time-dependent problems
by combining the multi-mesh FEM with the classical Rothe’s method. Example
application to a flame propagation problem is shown in Section 7.

2. Approximation with arbitrary-level hanging nodes

The efficiency and algorithmic simplicity of our adaptive higher-order finite ele-
ment algorithms is largely due to the technique of arbitrary-level hanging nodes [7].
When working with regular meshes (where two elements either share a common ver-
tex, common edge, or their intersection is empty), adaptivity often is done using the
red-green refinement strategy [1]. This technique first subdivides desired elements
into geometrically convenient subelements with hanging nodes and then it elimi-
nates the hanging nodes by forcing refinement of additional elements, as illustrated
in Fig. 1.

This approach preserves the regularity of the mesh at the price of producing ad-
ditional (forced) refinements and new degrees of freedom. Often, it creates elements
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Element marked for refinement:
Additional refinements forced

Mesh after the "red" step: by the "green" step:

Fig. 1: Red-green refinement.

with sharp angles which, in general, are not desirable in finite element analysis.
The “green” refinements can be avoided by introducing hanging nodes, i.e., by

allowing irregular meshes where element vertices can lie in the interior of edges of
other elements. To ease the computer implementation, most finite element codes
working with hanging nodes limit the maximum difference of refinement levels of
adjacent elements to one (1-irregularity rule) – see, e.g., [3, 9]. In the following, by
k-irregularity rule (or k-level hanging nodes) we mean this type of restriction where
the maximum difference of refinement levels of adjacent elements is k. In this context,
k = 0 corresponds to adaptivity with regular meshes and k = ∞ to adaptivity with
arbitrary-level hanging nodes. It is illustrated in Fig. 2 that even the 1-irregularity
rule does not avoid all forced refinements:

Fig. 2: Refinement with 1-irregularity rule.

The amount of forced refinements in the mesh depends on the level of hanging
nodes allowed. Let us introduce a simple model problem which shows how the level
of hanging nodes influences the number of degrees of freedom and condition number
of the stiffness matrices: Consider a square domain Ω = (−1, 1)2 covered with a mesh
consisting of four cubic elements, as shown in Fig. 3.

We solve the Poisson equation −∆u = f in Ω with u = 0 on the boundary.
Assume a right-hand side f such that the corresponding exact solution u is zero
everywhere in Ω with the exception of a significant local perturbation contained
inside of a small triangle Tn with the vertices [−2−n,−2−n], [0, 0], [−2−n, 2−n]. Fig. 4
shows, for n = 5, meshes obtained under various irregularity rules:
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Fig. 3: Domain Ω and initial coarse mesh.

Fig. 4: Meshes obtained with k-irregularity rules, k = 1, 2, 3,∞.

Notice that the amount of forced refinements within the elements K2, K3, and K4

decreases as the parameter k grows. Next we run the adaptive procedure with cubic
elements for n = 1, 2, . . . , 15. Fig. 5 shows the number of degrees of freedom corre-
sponding to the final meshes. The horizontal axis represents the spatial scale 2−n.
Fig. 6 shows the condition number of the corresponding stiffness matrices.

These results demonstrate that the performance of automatic adaptivity with
arbitrary-level hanging nodes is superior to adaptivity on regular meshes, and even
to adaptivity with one-, two-, or three-irregular meshes. Obviously, quantitative
gains in the number of degrees of freedom and condition number of the stiffness
matrix depend on specific features of the solved problem. In our experience, the
advantages of the technique of arbitrary-level hanging nodes are most apparent in
problems containing curvilinear material interfaces or boundary/internal layers.

3. Multi-mesh hp-FEM

The basic ingredient for the self-adaptive finite element methods presented in
this paper is an algorithmic framework that allows us to work efficiently with var-
ious physical fields or various approximations of the same physical field defined on
geometrically and polynomially different meshes. The higher-order multi-mesh FEM
was first introduced in the context of linear thermoelasticity in [8], where the dis-
placement components u1, u2 and the temperature T were approximated on different
meshes equipped with independent adaptivity mechanisms.

188



10
−4

10
−3

10
−2

10
−1

10
0

0

100

200

300

400

500

600

700

800
Stiffness matrix size − cubic elements

Mesh diameter

D
eg

re
es

 o
f f

re
ed

om
regular
1−irregular
2−irregular
3−irregular
free
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The main ideas of the multi-mesh hp-FEM are as follows: For the sake of pro-
gramming feasibility, we restrict ourselves to meshes derived from a common coarse
master mesh τm via sequences of mutually independent local refinements. The mas-
ter mesh τm is very coarse and often it is not even used for discretization purposes –
it serves as the top of a tree-like data structure which is utilized by the multi-mesh
assembling procedure. The situation is illustrated in parts A – D of Fig. 7. In part E
of Fig. 7 we also show the geometrical union of all meshes in the system that we call
union mesh and denote by τu.

Fig. 7: Example of a master mesh τm (left), meshes τ1, τ2, τ3 obtained by its refinements,
and the corresponding union mesh τu (right).

It is worth mentioning that the union mesh is never created physically in the
computer memory but its virtual elements are parsed by the element-by-element as-
sembling procedure as usual in higher-order finite element methods [10], and that
the multi-mesh FEM uses hanging nodes of arbitrary level (see [7], also available
as a preprint on-line2). This technique eliminates forced refinements and thus con-
tributes greatly to the modularity and efficiency of automatic adaptivity algorithms.
The multi-mesh FEM would work (less efficiently) also with one-level hanging nodes,
but not on regular meshes (due to possibly conflicting green refinements).

4. Adaptive hp-FEM with arbitrary-level hanging nodes

In contrast to standard adaptive FEM (h-FEM), automatic adaptivity in the
hp-FEM requires more information about the behavior of the error in element in-
teriors (see, e.g., [3, 4, 10] and the references therein). Some authors investigate
numerically the analyticity of the solution in every element in order to decide be-
tween p- and h-refinement [4]. Such approach uses two refinement candidates per
element, as illustrated in Fig. 8 (the numbers in elements stand for their polynomial
degrees). According to our experience, at least for elliptic problems this strategy
yields exponential convergence.

We prefer a different approach where more refinement candidates are considered,
as shown in Fig. 9.

Typically, we vary the polynomial degrees in the subelements by two, which
for a triangular element yields 34 = 81 h-refinement candidates. The strategy was
described in detail in [7]. Since in the latter case every refinement candidate can be

2http://www.math.utep.edu/preprints/2006/2006-07.pdf
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Fig. 8: hp-adaptivity with two refinement candidates (p and h refinement).

Fig. 9: hp-adaptivity with multiple refinement candidates.

reproduced using several steps with the pair of candidates of the former strategy, it
is not surprising that usually the convergence curves are almost identical when error
is plotted as a function of the number of degrees of freedom. However, according to
our experience, computations with the latter approach usually take less CPU time
since fewer adaptivity steps are needed and thus the discrete problem is solved less
frequently. This is illustrated in Fig. 10.

Obviously, the latter strategy requires even more information about the error than
the level of its analyticity. In order to select an optimal refinement candidate, we need
to know the approximate shape of the error function εh,p = u−uh,p. In principle, this
information could be recovered from suitable estimates of higher derivatives of the
solution, but such approach is not very practical and it has not been used by anyone
to our best knowledge. In practice, we employ the technique of reference solutions [3].
The reference solution uref is sought in an enriched finite element space Vref , and
the error function is approximated as εh,p ≈ uref − uh,p. The reference space Vref is
constructed in such a way that all elements in the mesh are subdivided uniformly and
their polynomial degree is increased, i.e., Vref = Vh/2,p+1. The method for selecting
the optimal refinement candidate will be described in the following.

4.1. Element-by-element adaptivity algorithm

With an a-posteriori error estimate of the form

εh,p ≈ uref − uh,p, (1)

the outline of our hp-adaptivity algorithm is as follows:

1. Assume an initial coarse mesh τh,p consisting of (usually) quadratic elements.
Besides other technical data, user input includes a prescribed tolerance
TOL > 0 for the H1-norm of the approximate error function (1) and the
number DDOF of degrees of freedom to be added in every hp-adaptivity step.
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Fig. 10: Illustration of performance of adaptivity schemes with two refinement candidates
per element (simple) and multiple candidates per element (ortho). The horizontal axis
shows the number of DOF (top) and CPU time (bottom).

2. Compute coarse mesh approximation uh,p ∈ Vh,p on τh,p.

3. Find reference solution uref ∈ Vref , where Vref is obtained by dividing all
elements and increasing the polynomial degrees by one.

4. Construct the approximate error function (1), calculate its norm

ERR2
i = ‖εh,p‖2

1,2

on every element Ki in the mesh, i = 1, 2, . . . ,M . Calculate the global error,

ERR2 =
M∑
i=1

ERR2
i .
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5. If ERR ≤ TOL, stop computation and proceed to postprocessing.

6. Sort all elements into a list L according to their ERRi values in decreasing
order.

7. While the number of newly added degrees of freedom in this step is less than
DDOF do:

(a) Take the next element K from the list L.

(b) Perform hp-refinement of K (to be described in more detail in Para-
graph 4.2). Note that the refinement of K may introduce new hanging
nodes on its edges, but the surrounding mesh elements are not affected.

8. Adjust polynomial degrees on unconstrained edges (edges without hanging
nodes, cf. [10]) using the minimum rule (every unconstrained edge is assigned
the minimum of the polynomial degrees on the pair of adjacent elements).

9. Continue with step 2.

4.2. Selection of optimal hp-refinement of an element

Let K ∈ τh,p be an element of polynomial degree pK that was marked for re-
finement. Without loss of generality, assume that K is a triangle, the procedure
for refinement of quadrilateral elements is analogous. We consider the following
Nref = k + (k + 1)4 refinement options, where k ≥ 0 is a user input parameter:

1. Increase the polynomial degree of K by 1, 2, . . . , k without spatial subdivision.
This yields k refinement candidates.

2. Split K into four similar triangles K1, K2, K3, K4. Define p0 to be the integer
part of pK/2. For each Ki, 1 ≤ i ≤ 4 consider k + 1 polynomial degrees
p0 ≤ pi ≤ p0 + k. This yields additional (k + 1)4 refinement candidates. In
this case, edges lying on the boundary of K inherit the polynomial degree pj

of the adjacent interior element Kj. Polynomial degrees on interior edges are
determined using the minimum rule.

For each of these Nref options, we perform a standard H1-projection of the reference
solution uref onto the corresponding vector-valued piecewise-polynomial space on
the refinement candidate. The candidate with minimum projection error relative to
the number of added degrees of freedom is selected.

Note that if the technique of arbitrary-level hanging nodes is not in effect, hp-
refinements involving spatial subdivision can be more costly than p-refinement candi-
dates, since the latter never cause forced refinements. If the selection of the optimal
element refinement is done locally, i.e., without taking the forced refinements into
account, the hp-adaptive algorithm may make wrong decisions.
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5. Space-time adaptive hp-FEM

Our space-time adaptive algorithm is based on a combination of the multi-mesh
hp-FEM presented in Section 3 with Rothe’s method. Rothe’s method is a natural
counterpart of the more widely used Method of Lines (MOL). While MOL preserves
the continuity in time and discretizes the spatial variable, yielding a system of ODEs
in time, Rothe’s method preserves the continuity of the spatial variable while dis-
cretizing time, which leads to one or more PDEs in space per time step. The actual
number of these PDEs is proportional to the order of accuracy of the time discretiza-
tion method. For example, the implicit Euler method yields one PDE in space per
time step. Note that Rothe’s method is fully equivalent to the MOL if no adaptivity
takes place. However, in contrast to MOL, Rothe’s method provides an excellent op-
portunity to exploit spatially adaptive algorithms in the context of time-dependent
problems.

Let us illustrate the space-time adaptive algorithms on a simple example of a par-
abolic heat transfer equation of the form

∂u

∂t
−∆u = f. (2)

Note that the methodology is not restricted to linear parabolic problems as will be
shown in Section 7. When applying the backward Euler method to (2), we obtain

∂u

∂t
≈ un+1 − un

∆t
⇒ −∆t∆un+1 + un+1 = un + ∆tfn+1. (3)

If we choose to use a second-order accurate backward differentiation formula instead,
we obtain

∂u

∂t
≈ 3un+2 − 4un+1 + un

2∆t
⇒ −2∆t∆un+2 + 3un+2 = 4un+1 − un + 2∆tfn+2. (4)

Note that equations (3) and (4) contain spatial derivatives only, and can therefore
be solved using the spatially-adaptive algorithm which was described in Section 4.

Application of the multi-mesh hp-FEM

The approximation un on the right-hand side of (3) is defined on a locally refined
mesh that was constructed using an adaptive process during the previous time step.
The unknown approximation un+1 corresponding to the end of the current time step
is obtained using a new adaptive process that starts from some coarse mesh. Thus in
every step of the adaptive algorithm, assembling is done over two different meshes.
While the mesh for un remains the same during the adaptivity process, the mesh for
un+1 changes after each refinement step. Assembling over different meshes is done
using the multi-mesh technology which was described in Section 3. At the end of
the current time step, un+1 is defined on a new locally refined mesh that is different
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from the mesh for un – it is finer in some regions and coarser in others. This effect
can be seen as simultaneous mesh refinement and coarsening between time steps. In
every time step, the adaptivity process stops when a prescribed accuracy in space is
reached. The stopping criterion is related to the norm of the difference between the
reference and coarse mesh solutions, as described in Section 4. Adaptive selection of
the time step is a simple matter and one can use standard ODE methods to do that.
The process will be illustrated on a flame propagation problem in Section 7.

In practice, the initial mesh for un+1 is either chosen to be the master mesh
(coarsest mesh in the multi-mesh hierarchy, see Section 3), or we take off the last
one or two refinement layers from the final mesh for un, and start from there. The
former approach yields a sequence of meshes which is more optimal from the point
of view of the number of DOF used but the computation is longer. On the other
hand, the latter one is faster but the final mesh for un+1 may contain some local
refinements which are due to un and not needed for un+1. As a consequence, one
may need more DOF to obtain un+1 on the desired level of accuracy. In our opinion,
the latter approach is preferable for practical computations where CPU time matters.
The former one can be used for presentation purposes, such as producing videos of
meshes evolving in time, etc. The situation is similar for the second-order backward
differentiation formula (4), where we need to assemble simultaneously more than
three different meshes.

6. Adaptive control of time step

A simple strategy for adaptive time step control was introduced by Valli et al. [11].
Their PID controller is based on the relative changes of a suitable indicator variable
(temperature, concentration, turbulent kinetic energy, eddy viscosity etc.) and can
be summarized as follows:

1. Compute the relative changes of the chosen indicator variable u

en =
||un+1 − un||
||un+1|| .

2. If they are too large (en > δ), reject un+1 and recompute it using

∆t∗ =
δ

en

∆tn.

3. Adjust the time step smoothly to

∆tn+1 =

(
en−1

en

)kP
(

TOL

en

)kI
(

e2
n−1

enen−2

)kD

∆tn.
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4. Limit the growth and reduction of the time step so that

∆tmin ≤ ∆tn+1 ≤ ∆tmax, m ≤ ∆tn+1

∆tn
≤ M.

The default values of the PID parameters as proposed by Valli et al. [11] are

kP = 0.075, kI = 0.175, kD = 0.01.

Unlike in the case of adaptive time-stepping based on the local truncation error,
there is no need to compute an extra solution with a different time step. Hence,
the cost of the feedback mechanism is negligible. The method has been used with
favorable results by various researchers including [6].

7. Example: A flame propagation problem

We consider a freely propagating laminar flame and its response to a heat-
absorbing obstacle represented by a set of cooled parallel rods with a rectangular
cross-section. The domain Ω is shown in Fig. 11.

Γ2
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Γ2
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3Γ

Γ

Γ3

3Γ

Γ3

Γ3

2Γ

Γ2

Γ2

Ω

Fig. 11: Computational domain for the flame propagation problem.

The domain has dimensionless length l = 60 and width w = 16. The narrow part
has width w/2, length l/4, and starts at l/4 from the left end point.

We use a low Mach number laminar flame propagation model taken from [5]
which assumes that the motion of the fluid is independent from the temperature and
species concentration. The flow velocity in the burner is considered to be zero. The
model consists of a system of two coupled nonlinear parabolic equations

∂θ

∂t
−∆θ = ω(θ, Y ) in Ω× (0, T0),

∂Y

∂t
− 1

Le
∆Y = −ω(θ, Y ) in Ω× (0, T0)

for the dimensionless temperature θ, 0 ≤ θ ≤ 1, and dimensionless concentration Y ,
0 ≤ Y ≤ 1. The dimensionless time T0 = 60. The goal of the computation is accurate
resolution of the nonstationary reaction rate (flame intensity) ω(θ, Y ) which is defined
by the Arrhenius law

ω(θ, Y ) =
β2

2Le
Y exp

β(θ − 1)

1 + α(θ − 1)
. (5)
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Here, Le = 1 is the Lewis number (ratio of diffusivity of heat and diffusivity of mass),
α = 0.8 the gas expansion coefficient in a flow with nonconstant density, and β = 10
the dimensionless activation energy.

On the left boundary edge Γ1, Dirichlet boundary conditions corresponding to
the burnt state are prescribed, i.e.,

θ = 1 in Γ1 × (0, T0),

Y = 0 in Γ1 × (0, T0).

The remaining part Γ2 of the boundary is assumed adiabatic with the homogeneous
Neumann conditions

∂θ

∂ν
= 0 in Γ2 × (0, T0),

∂Y

∂ν
= 0 in Γ2 × (0, T0).

The absorption of heat along Γ3 is modeled via Newton boundary conditions with
a heat loss parameter k = 0.1,

∂θ

∂ν
= −kθ in Γ3 × (0, T0),

∂Y

∂ν
= 0 in Γ3 × (0, T0).

As the initial condition, we prescribe the analytical solution of a one-dimensional
model [5]:

θ(0, x1) =

{
1 for x1 < x∗,
exp(x∗ − x1) for x1 ≥ x∗

(6)

and

Y (0, x1) =

{
0 for x1 < x∗,
1− exp(Le(x∗ − x1)) for x1 ≥ x∗

(7)

with x∗ = 9.

Figs. 12–14 show the reaction rate ω(Y, θ) and the underlying hp-FEM meshes
for three different time instants t1, t2, t3. The numbers inside elements indicate their
polynomial degrees. Notice that very small elements on the flame front are adja-
cent to very large elements. This is possible due to the technique of arbitrary-level
hanging nodes [7]. For problems with sharp fronts or curvilinear material interfaces,
this technique saves large amount of degrees of freedom which otherwise would be
needed to keep the mesh regular. Movies showing the dynamical evolution of ω(Y, θ)
along with the corresponding hp-FEM meshes for this problem can be found at
http://spilka.math.unr.edu/gallery/.
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Fig. 12: Reaction rate and higher-order finite element mesh at time t1.

Fig. 13: Reaction rate and higher-order finite element mesh at time t2.
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Fig. 14: Reaction rate and higher-order finite element mesh at time t3.

References

[1] B. Aksoylu, S. Bond, M. Holst: An odyssey into local refinement and multilevel
preconditioning III: Implementation and numerical experiments. SIAM J. Sci.
Comput. 25 (2003), 478–498.

[2] R. Courant: Variational methods for the solution of problems of equilibrium and
vibrations. Bull. Amer. Math. Soc. 49 (1943), 1–23.

[3] M. Paszynski, J. Kurtz, L. Demkowicz: Parallel, fully automatic hp-adaptive
2D finite element package. TICAM Report 04-07. The University of Texas at
Austin 2004.

[4] T. Eibner, J.M. Melenk: An adaptive strategy for hp-FEM based on testing for
analyticity. Comput. Mech. 39 (2007), 575–595.

[5] J. Lang: Adaptive multilevel solution of nonlinear parabolic PDE systems: The-
ory, algorithm and applications. Lecture Notes Comput. Sci. Engrg. 16. Berlin,
Springer-Verlag, 2001.

[6] D. Kuzmin, S. Turek: Numerical simulation of turbulent bubbly flows. In:
G.P. Celata, P. Di Marco, A. Mariani, R.K. Shah (eds.): Two-Phase Flow
Modeling and Experimentation. Pisa, Edizioni ETS 2004, Vol. I, pp. 179–188.

[7] P. Solin, J. Cerveny, I. Dolezel: Arbitrary-level hanging nodes and automatic
adaptivity in the hp-FEM. Math. Comput. Simulation 77 (2008), 117–132.

199



[8] P. Solin, J. Cerveny, L. Dubcova: Adaptive multi-mesh hp-FEM for lin-
ear thermoelasticity. Research Report No. 2007-08. Department of Math-
ematical Sciences, University of Texas at El Paso, to be downloaded
at http://www.math.utep.edu/preprints/2007/2007-08.pdf. Submitted to
Math. Comput. Simulation.

[9] P. Solin, L. Demkowicz: Goal-oriented hp-adaptivity for elliptic problems. Com-
put. Methods Appl. Mech. Engrg. 193 (2004), 449–468.
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NUMERICAL APPROXIMATION OF THE NON-LINEAR
FOURTH-ORDER BOUNDARY-VALUE PROBLEM∗

Ivona Svobodová

Abstract
We consider functionals of a potential energy Pψ(u) corresponding to an axisym-

metric boundary-value problem. We are dealing with a deflection of a thin annular
plate with Neumann boundary conditions. Various types of the subsoil of the plate
are described by various types of the nondifferentiable nonlinear term ψ(u). The aim
of the paper is to find a suitable computational algorithm.

1. Introduction

Let us consider an axisymmetric annular elastic thin plate. In addition, the body
is in the contact with an elastic unilateral subsoil. Consequently, the reaction of
the (a-priori unknown) active part of the subsoil has to be taken into account in the
mathematical model.

The fourth-order model is based on the well-known Kirchhoff theory for thin
plates, for derivation see [1], [2]. This model can be formulated in terms of a varia-
tional equation. The potential P of this problem is quadratic.

The nonlinear term ψ, which represents the subsoil, is added to the identity in
the classical formulation. The form ψ is a combination of the positive and negative
parts u+ and u− of the deflection u = u(r). The complete potential Pψ is the sum
of the quadratic potential P and the potential of the subsoil response.

The aim of the paper are to introduce and to discuss the difficulties with the dis-
crete version of the problem obtained through the finite element method. Finally, we
propose one possible way of the numerical realization of the mathematical problem.

2. Setting of the problem

The set
{
(r, ϕ, z) ; a ≤ r ≤ b ,−π < ϕ ≤ π , −h/2 ≤ z ≤ h/2

}
describes the

plate in three dimensions in cylindrical coordinates (r, ϕ, z).
Let the elastic axisymmetric annular thin plate be represented by the domain

(a, b) ⊂ R+, where R+ is the set of positive real numbers. The body thickness h will
be involved in the equilibrium equation as a constant (see [1] for details).

In general, the operator ψ is defined for the deflection function u and it is of the
form

ψ(u) =
m∑

i=1

kNiu
+χAi

−
n∑

j=1

kPju
−χBj

m, n ∈ N , (1)

∗I would like to thank here the advisor of my PhD. studies doc. RNDr. Ing. J.V. Horák, CSc.
for inspiring advisement.
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where kNi and kPj are non-negative functions defined on (a, b) and χAi
, χBj

are
characteristic function of the closed subintervals Ai, Bj ⊂ (a, b). The functions u+

and u− are positive and negative part of the function u, respectively, i.e. u+ :=
1
2
(|u|+ u) and u− := 1

2
(|u| − u).

Classical formulation. According to the definition, the classical solution u = u(r)
satisfies the equilibrium equation

h2D [r[1
r
[r · u′]′]′]′ + r ψ(u) = r f̂ , r ∈ (a, b) (2)

with classical boundary conditions (for r ∈ {a, b}) of the following types

Dirichlet conditions u(r) = û(0)
r and u′(r) = û(1)

r (3a)

or
Neumann conditions Mu(r) = m̂r and Tu(r) = t̂r (3b)

or any reasonable combination of them. The symbol [ · ]′ means d
dr

( · ) and the con-
stant D is the combination of the elastic material coefficients namely the Young’s
modulus E and the Poisson’s ratio µ. The function f̂ = f̂(r) describes given vol-
ume forces. The operators T and M represent shear forces and bending moments
on the boundary, respectively. They are defined through the identities T(u) :=

−h3D (r u′′′ + u′′ − 1
r
u′) and M(u) := −h3D (r u′′ + µu′). The values û

(0)
r , û

(1)
r , m̂r,

and t̂r are given.
This is the linear elasticity problem. Accordingly, the components of the small

strain tensor εεε for the homogenous izotropic plate are in the forms εrr = −z u′′(r),
εϕϕ = −z 1

r
u′(r), and εαβ = 0 for α, β otherwise, where α, β ∈ {r, ϕ, z} and

z ∈ (−h
2
, h

2
).

The unstable Neumann boudary conditions with m̂a = 0, m̂b = 0, and t̂a = 0,
t̂b = 0 will be considered in the following paragraphs. These conditions correspond
to the so-called “free” plate.

Weak formulation. In order to get the weak form of the problem, we introduce
the finite energy function space. This is the weighted Sobolev space which is defined
as

H2
(
(a, b); [r, 1

r
, r]

)
:= {v = v(r) | v, v′′ ∈ L2

r(a, b) and v′ ∈ L2
1
r
(a, b)} . (4)

Weighted Lebesgue spaces L2
%(r)(a, b) are Hilbert spaces with the norm | · |%(r) induced

by the inner product (u, v)%(r) :=
∫ b

a
u(r) v(r) %(r) dr. The norm ‖ · ‖[r, 1

r
,r] of the

Hilbert space H2
(
(a, b); [r, 1

r
, r]

)
is related to the inner product (u, v)[r, 1

r
,r] := (u, v)r+

(u′, v′) 1
r

+ (u′′, v′′)r. See [3] for the details concerning weighted spaces.

The linear space H2
(
(a, b); [r, 1

r
, r]

)
is not only finite energy function space but

also virtual displacement space for the problem. Indeed, the Neumann boundary
conditions were choosen in the previous text.
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We introduce the following forms for w, v ∈ V = H2
(
(a, b); [r, 1

r
, r]

)
:

a0(w, v) := Dh2
(

(w′, v′) 1
r

+ (w′′, v′′)r + µ(w′′, v′)1 + µ(w′, v′′)1

)
, (5a)

aψ(w, v) := a0(w, v) + (ψ(w), v)r , (5b)

F(v) := (f̂ , v)r . (5c)

We say that a function u in V is a weak solution of the problem (2), (3) whenever

aψ(u, v) = F(v) ∀v ∈ V. (6)

For the sake of brevity, we consider the operator ψ from (1) in the special case:
m = 1, kN1 ≡ kN , and kPj

≡ 0 for ∀j, i.e.

ψ(u) = kNu+ , (7)

where kN ∈ L∞
(
(a, b)

)
, kN(r) ≥ k̂N , k̂N ∈ R+. This form of ψ describes the nonlinear

unilateral upper subsoil of the Winkler’s type. A sufficient solvability condition of
this problem is the inequality F(1) > 0. See [2].

3. Discretization and numerical realization

We assume the discretization of the closed domain 〈a, b〉 as follows

a = r1 < r2 < · · · < rN < rN+1 = b

for N ∈ N. The discretization parameter h is defined as h := max
i=1,...N

(ri+1 − ri).

Finite element method has been used for the discrete formulation of the problem.
For any h, we introduce the finite dimensional space Vh which consists of piecewise
cubic smooth functions

Vh := {vh ∈ C1
(
(a, b)

)
: vh|〈ri,ri+1〉 ∈ P3 ∀i = 1, . . . N} . (8)

The standard basis in Vh will be denoted by {ϕk}2N+2
k=1 , for details see [4]. Therefore,

every function vh ∈ Vh is represented by

vh(r) =
N+1∑

k=1

(
v2k−1ϕ2k−1(r) + v2kϕ2k(r)

)
, (9)

where v2k−1 = vh(rk) and v2k = v′h(rk).
We look for the discrete solution which is defined as the function uh ∈ Vh satis-

fying the identity
ah

ψ(uh, vh) = Fh(vh) ∀vh ∈ Vh , (10)

where forms aψ and F are defined in (5). The superscript h means the usage of the
numerical quadrature procedure on every subinterval 〈ri, ri+1〉 instead of the exact
integration. The two points Gaussian quadrature rule was used.
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The computional problem. The detailed analysis of the form ah
ψ enables us to

see, where the main problem is. The second term ([uh]
+, vh)r has the following form

(
kN(r)

[ 2N+2∑

k=1

ukϕk(r)
]+

, vh(r)
)h

r
=

=
(
kN(r)

1

2

2N+2∑

k=1

ukϕk(r) + kN(r)
1

2

∣∣∣
2N+2∑

k=1

ukϕk(r)
∣∣∣ , vh(r)

)h

r
.

The necessity of the “C0–function” u+ expression in terms of the base {ϕk}k is
the origin of numerical difficulties in the computational algorithm. We propose
a possible way how to overcome this difficulty. It is based on the following equivalent
formulation of (6):

ah
ψ(uh, vh) = Fh(vh) ∀vh ∈ Vh ,

ah
0(uh, vh) + (kN u+

h , vh)
h
r = Fh(vh) ,

ah
0(uh, vh) + (kN uh, vh)

h
r = Fh(vh)− (kN u−h , vh)

h
r ,

ah
0(uh, ϕk) + (kN uh, ϕk)

h
r = (f̂ , ϕk)

h
r − (kN u−h , ϕk)

h
r , k = 1, . . . 2N + 2 ,

2N+2∑
j=1

(
ah

0(ϕj, ϕk) + (kN ϕj, ϕk)
h
r

)
uj = (f̂ , ϕk)

h
r − (kN u−h , ϕk)

h
r ,

(K + kNM)~u = ~f − (kN u−h , ϕk)
h
r .

The relation u = u+ − u− has been used. Note that the matrix K + kNM is
positive definite. More general types of the form ψ can be used in the previous
procedure. Other boundary conditions do not affect the last identity. Hereafter, we
could formulate the computational algorithm.

The suggested computational algorithm

1. Setting of the system stiffness matrix KN = K + kNM ; standard modifying
of KN with respect to the given boundary conditions (see [4]),

2. setting of the vector ~f without any boundary conditions adjustments,

3. the initial choice of ~u0,

4. procedure in the nth iteration:

(a) setting of the vector (kN(un−1)
−, ~ϕ)h

r , which represents the reaction of the
subsoil active parts,

(b) setting of the right side vector ~fn = ~f − (kN(un−1)
−, ~ϕ)r; standard mod-

ifying of the vector with the respect to the given boundary conditions
(see [4]),
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(c) solving of the system KN~un = ~fn ,

(d) the termination criterion
‖~un − ~un−1‖

‖~un‖ ≤ tol.

3.1. Numerical examples

We illustrate the efficiency of the suggested computational algorithm by two
numerical examples. We suppose the axisymmetric annular elastic thin plate with
the following characteristics. The length of inner radius is a = 1m and of outer
one is b = 5m. The plate thickness is h = 0.01m and the elastic constants are
E = 107N/m2 and µ = 0.5. The magnitudes E and µ are choosen to get a small
deformation representation of very ellastic material in order to get a better visual
verification.

Example 1: The zero Dirichlet boundary conditions (3a) for all r ∈ {a, b} have
been prescribed. The data in equation (6) are the following: F(v) = (−103 1

r
, v(r))r,

the operator ψ(u) = −107u−χB, where B = 〈2.25m, 3.75m〉. Note that the choosen
boundary conditions are stable, so we do not require anything in order to get the
solution existence. The table of iterations and the solution diagram follow.

Example 2: The zero Neumann boundary conditions (3b) for all r ∈ {a, b} have
been prescribed. The given data in equation (6) are the following:

F(v) = 5 · 103
(− r(1)v(r(1))− r(2)v(r(2)) + r(3)v(r(3))

)

iteration rel. error residual
1 5.98826× 10−4 1.49466× 102

2 5.93289× 10−4 1.48116× 102

...
...

...
449 1.00296× 10−5 2.56704
450 9.93897× 10−6 2.54386

inner margin a = 1m middle radius = 3m outer margin b = 5m

−0.07

−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

de
fle

xt
io

n 
(m

)

before
deformation

after
deformation

Fig. 1: The character of resulting bending for the first problem.
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for [r(i)]3i=1 = [1.5, 2.7, 3.7]. This F describes the forces concerned on rings with radii
[r(i)]i and with the origin on the axis of the plate symmetry. Finally, the form ψ is
the following:

ψ(u) = 107u+χA1 + 105u+χA2 − 105u−χB1 − 107u−χB2 ,

where A1 = 〈2.0m, 3.25m〉, A2 = 〈4.0m, 5.0m〉, B1 = 〈1.0m, 2.25m〉, and the last
B2 = 〈3.0m, 4.0m〉. It is prescribed upper and lower subsoil. Hence, the weak
solution of the problem exists. The table of iterations and the solution diagram
follow.

iteration rel. error residual
1 5.11890× 10−2 1.60807× 108

2 4.47150× 10−2 1.52994× 108

...
...

...
1929 9.99668× 10−6 3.36741× 105

inner margin a = 1m middle radius = 3m outer margin b = 5m

−0.6

−0.4

−0.2

0

0.2

de
fle

xt
io

n 
(m

)

Fig. 2: The character of resulting bending for the second problem.
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MODELLING OF MULTICOMPONENT DIFFUSIVE PHASE
TRANSFORMATION IN SOLIDS∗

Jǐŕı Vala

Abstract

Physical analysis of phase transformation of materials consisting from several (both
substitutional and interstitial) components, coming from the Onsager extremal ther-
modynamic principle, leads, from the mathematical point of view, to a system of
partial differential equations of evolution type, including certain integral term, with
substantial differences in particular phases (α, γ) and in moving interface of finite
thickness (β), in whose center the ideal liquid material behaviour can be detected.
The numerical simulation of this process in MATLAB is able to explain some phe-
nomena (e.g. the interface velocity as a function of temperature) better than known
simplified models assuming the sharp interface and additional boundary and transfer
conditions.

1. Introduction

The simulation of diffusional phase transformation requires to solve the coupled
problem of bulk diffusion and interface migration. Most models pay attention es-
pecially to binary (two-component) alloys with substitutional components – cf. [1]
and [6]. Usually the interface is assumed to be sharp (in other word: its thickness
is supposed to be negligible), thus some artificial boundary and transfer conditions
have to be applied at the interface, as e.g. the ortho- or para-equilibrium contact con-
ditions for a multi-component model in [10]. However, a real migrating interface of
finite thickness h may drag segregated impurity atoms forming concentration profiles
across the interface. Such a local diffusion process reduces the migration velocity v
due to the Gibbs energy dissipated by this process; this decelerating effect is known
as solute drag. In this paper we shall consider alloys with a finite number (at least
two) of components. In [11], following some ideas of [8], coming from the Onsager
extremal thermodynamic principle (derived originally in [7], for more details and var-
ious generalizations see [5]), the steady-state diffusion of solute across the interface is
driven by the difference of chemical potentials µ(c?), corresponding to the vector c?

of mole fractions (as concentrations characteristics) related to all q substitutional
components, e.g. c? = (c1, . . . , cq); since c1 + . . . + cq = 1, it is useful to introduce
c = (c1, . . . , cq−1), too. As discussed in [2], at least for the steady-state case this
approach gives identical results with the solute drag formula proposed in [4]. In [15]
the same approach is generalized to admit the evolution of molar fractions in time

∗This work was supported by grant No. IAA200410601 of the Academy of Sciences of the Czech
Republic.
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and the presence of r interstitial components; consequently c? = (c1, . . . , cq, . . . , cq+r)
and c = (c1, . . . , cq−1, cq+1, . . . , cq+r). Nevertheless, [15] shows only one practical ex-
ample of such evolution near the initial time; the algorithm suggested in this paper
handles also slow long-time redistributions.

All material characteristics (chemical potentials, diffusion factors, interface mo-
bility) should correspond to a material structure where usual lengths are in micro-
meters; moreover, the usual interface thickness can be 10−10 m. Consequently, it is
not easy to identify such characteristics in the laboratory. This is the first reason
for the one-dimensional formulation of the problem in this paper, the second one
is the requirement of simple, transparent and reader-friendly notations; some useful
generalizations will be sketched in concluding remarks. For certain material sample
of length H, in addition to c? and c it is useful to introduce vectors of diffusive fluxes
j? = (j1, . . . , jq, . . . , jq+r) where j1 + . . . + jq = 0. We shall study the redistribution
of c and j in an arbitrary positive time t in a closed system with j(.) = 0 at the
boundary (consisting of two points, whose distance is H). Such system requires no
additional boundary conditions; we need only to know all initial values c for t = 0.
If x refers to the standard Cartesian coordinate system and v is positive for the
interface motion from the left to the right we can localize the interface (for x) into
the interval 〈0, h〉 and the exterior boundary of a sample into two points

xL(t) = xL(0)−
∫ t

0
v(ς) dς xR(t) = xR(0)−

∫ t

0
v(ς) dς ;

clearly xR(t) − xL(t) = H and j(xL) = j(xR) = 0 for any t. Finally we have the
first phase, denoted in all following considerations by α, for x < 0, separated from
the second phase, denoted by γ, for x > h, by the phase interface, denoted formally
by β, for 0 ≤ x ≤ h.

If the dot symbol denotes the partial derivative with respect to t and the prime
symbol the partial derivative with respect to x then we are able to calculate the total
time derivative of a variable u as du/dt = u̇ − vu′. Namely the mass conservation
law for the constant molar volume Ω reads

dc?/dt + Ωj?′ = ċ? − vc?′ + Ωj?′ = 0 ; (1)

the integration of (1) from xL to xR, making use of the new notation

C?(x, t) =
∫ x

0
c?(ξ, t)dξ ,

then yields
Ċ?(xR)− Ċ?(xL)− v(c?(xR)− c?(xL)) = 0 . (2)

In the second section of this paper we shall sketch the physical background of
the diffusive and massive phase transformation, applying the Onsager arguments. In
the third section the derived system of equations for an unknown field c (because
both j and v can be identified with certain functions of c) will be analyzed with the
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aim to construct an effective algorithm searching for its approximate solution. The
fourth section will demonstrate new numerical results for a special Fe-rich
3-component Fe-Cr-Ni alloy. The last section is reserved for concluding remarks and
possible generalizations in several directions.

2. Physical background

Let us consider a closed system with the simple geometry, introduced above.
Every index in all following relations can be understood as a sum index in sense of
the Einstein rule; only an underlined index prohibits summation. Let i be an arbi-
trary index from 1, . . . , q + r and f an arbitrary index from {α, β, γ} The chemical
potential µi(x, c?) can be evaluated at every point of the sample as

µi(x, c?) = wf (x)µf
i (c

?) , (3)

making use of some reasonably continuous weight functions wf (x), having the prop-
erties

wα(x) = 1 , wγ(x) = 0 if xL < x < h/2 ,
wα(x) = 0 , wγ(x) = 1 if h/2 < x < xR ,
wβ(x) = 1− wα(x)− wγ(x) if xL < x < xR .

The well-known Gibbs-Duhem relation, formulated e.g. in [9], yields

ci
dµf

i

dt
= 0 , ciµ

f ′
i = 0 . (4)

The total Gibbs energy of the system is given by

G =
1

Ω

∫ xR

xL

ciµi dx .

Its time derivative can be expressed as

dG

dt
=

1

Ω

∫ xR

xL

(
dci

dt
µi + ci

dµi

dt

)
dx .

Inserting µi into the second additive term from (3) and integrating by parts, we
obtain

dG/dt =
1

Ω

∫ xR

xL

(
dci/dt µi + ciw

fdµf
i /dt− vci(w

fµf
i )
′ + vciw

fµf ′
i

)
dx .

By (4) the second and fourth additive terms vanish, moreover wf = 1 for any f ∈
{α, γ} if x ≤ 0 or x ≥ h, thus we come to the result

dG/dt =
1

Ω

∫ xR

xL

dci/dt µi dx− v

Ω

∫ h

0
ciµ

′
i dx .
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By (1), integrating by parts for a closed system again, we have finally

dG/dt =
∫ xR

xL

jiµ
′
i dx− v

Ω

∫ h

0
ciµ

′
i dx . (5)

The rate of dissipation Q of the total Gibbs energy can be evaluated by [13] in the
form

Q =
∫ xR

xL

j2
i

Ai

dx +
v2

M
(6)

where

Ai =
ciDi

ΩRT
, (7)

Di is the tracer diffusion coefficient, R is the gas constant, T is the absolute temper-
ature and M is the interface mobility.

The kinetics of our system corresponds to the variation

δ
(
dG/dt +

Q

2

)
(j?, v) = 0

with respect to the above mentioned constraint for substitutional components: if k is
an index similar to i, but from {1, . . . , q} only, then we can write

δ
(
dG/dt +

Q

2
+ λδkk

)
(j?, v, λ) = 0

with certain Lagrange multiplier λ, but without any additional constraints; all δ with
a couple of indices, here and everywhere later, refer to Kronecker symbols. To support
the brief notation, let us introduce the component type factor ai, equal to 1 for
i ≤ q, zero otherwise. Performing the variation, step by step, for j1, . . . , jq, . . . , jq+r,
v and λ, we obtain

∫ xR

xL

(
j̃iµ

′
i +

j̃iji

Ai

+ j̃iaiλ

)
dx = 0

for every j̃i,

− ṽ

Ω

∫ h

0
ciµ

′
i dx +

ṽ v

M
= 0

for every ṽ and formally also λ̃jiai = 0 for every λ̃. In this way we come to q + r
differential equations

µ′i +
ji

Ai

+ λai = 0 (8)

with a parameter λ for all both substitutional and interstitial components and to
one integral equation

v =
Ω

M

∫ h

0
ciµ

′
i dx (9)
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for the interface velocity. It is not difficult to remove λ from (8): multiplying (8)
by Ai and summing results with non-zero ai, we have

δkkAkλ = −Akµ
′
k − δkkjk = −Akµ

′
k

and consequently

λ = −Akµ
′
k

δllAl

where l is a sum index with the same properties as k. This enables us to evaluate
all fluxes as

ji = −Ai

(
µ′i − ai

Akµ
′
k

δllAl

)
; (10)

let us notice that we have
δkkjk = δiiaiji = 0

and consequently the system of q + r equations (8) can be reduced to the system of
q − 1 + r equations.

For practical calculations we need to express ji by means of (10), (7) and (3); it
is useful to introduce the decomposition

µf
i (c

?) = µf
0i + RT ln ci + ϕf

i (c
?) (11)

where µf
0i are constants for a given temperature T and ϕf

i are certain functions of c?

(usually not dominant, but non-negligible and formally complicated). Inserting this
decomposition together with (10) into (8), after rather long calculations, performed
in [15], p. 75, we are able to evaluate

NΩj = −Bc′ −Kc (12)

where B, K (functions of c) and N (dependent on x only) are square matrices of order
q−1+r, B full one, K and N diagonal ones, of the following material characteristics:

Bmn = δmn +
cm (ζq − ζn)

η
+

ϕmn − ϕmn

RT
, Kmm =

µm

RT
, Nmm =

1

ζmD
;

here m or n refer (instead of i) to a sum index from {1, . . . , r−1, q+1, . . . , q+r} and
moreover ζi = Di/D for some (non-zero) reference value D of the tracer diffusion
coefficient, η = ζici and

ϕmn = ϕ̂mn − aman
ζlcl

η
ϕ̂ln , µm = µ̂m − am

ζlcl

η
µ̂l

with µ̂m = wf ′
(
µf

0m + ϕf
m

)
and ϕ̂mn = wf∂ϕf

m/∂cn. For any variable u let us

introduce the simplified notation u¦ = u(0), uL = u(xL) and uR = u(xR). Then,
integrating (1) from 0 to x, omitting cq and jq, we receive

Ċ − v(c− c¦) + Ω(j − j¦) = 0 . (13)
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In particular, subtracting (13) with x = xR and x = xL,

ĊR − v(cR − c¦)− Ωj¦ = 0 , ĊL − v(cL − c¦)− Ωj¦ = 0 , (14)

we have only a formal modification of (2)

ĊR − ĊL − v(cR − cL) = 0 , (15)

but inserting (12) into (13), we obtain a new result

−NĊ + Bc′ + (K + vN)c = vNc¦ −NΩj¦ . (16)

3. Mathematical formulation and computational algorithms

We suppose that all values of molar fractions c are prescribed for t = 0. For their
initial time derivatives we usually have no better information than ċ = 0, thus also
Ċ = 0 and j¦ = 0 from (14). Let us also notice that C can be computed as integrals
of c−ca instead of c, using arbitrary reference constant admissible molar fractions ca.
Our problem is to find c from (16) with v inserted from (9). For a priori known B, K
and v and also xL, to solve (16) numerically (to construct a sequence of approximate
solutions, whose limit could be expected to coincide with the solution of (16)) means
to discretize (16) in time; this can be done by means of the Euler implicit scheme

Bc′ + (K + vN)c−N
C

τ
= vNc¦ −NΩj¦ −N

C×

τ
(17)

where τ denotes the time step and all variables are evaluated in time t, except
C× = C(t − τ). (The application of more advanced schemes of discretization in
time instead of (17) is possible, but leads to rather complicated forms of following
equations.) To obtain a system of linear algebraic equations, we have to apply
the discretization in 〈xL, xR〉, too. In practice only some estimates of all material
characteristics B and K, of the interface velocity v and of the boundary position xL

(then clearly xR = xL + H) are available, usually those from the previous time step,
thus (17) forms a basis for an iteration procedure where v can be recalculated from (9)
using the Simpson rule; also the evaluation of C needs some numerical integration.

Let us consider a sufficiently large fixed interval I, containing 〈xL, xR〉, decom-
posed to a finite number σ of subintervals 〈xs−1, xs〉, using σ+1 nodes x0, x1, . . . , xσ.
Then we can write (17) in the form

B
s cs

∆s

+
(
K

s
+ vN

s
) cs

2
−N

s ∆sc
s

2τ
(18)

= B
s cs−1

∆s

−
(
K

s
+ vN

s
) cs−1

2
+ vN

s
c¦ −N

s
Ωj¦ −N

s 2(C×s − Cs−1)−∆sc
s−1

2τ

where an integer s refers to the s-th node in I (values at xL and xR, in general not
identical with any xs, are interpolated), ∆s = xs−xs−1 and overlined s-indexed sym-
bols refer to averaged values on 〈xs−1, xs〉. Let us notice that c¦ coincides always with
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some element of the set {c0, c1, . . . , cσ}. Our aim is to study the long-time behaviour
of a system, thus it is useful to take sufficiently small ∆s in comparison with τ . We
would like to solve c0, c1, . . . , cs, . . . effectively, step by step, but this is impossible
because of unknown values c¦ and j¦ (the system of linear algebraic equation is not
triangular). However, we shall show that this difficulty can be overcome: the main
idea will be demonstrated on (17), its formal implementation into (18) will be left
to the reader. Let c¦e be some estimate of c¦ (from the preceding iteration, if not
available yet then from the previous time step). Let us consider c¦m = ξI

mc¦em and

j¦m = ξII
mvc¦em for some positive real 2(q − 1 + r) factors ξI

m and ξII
m. We are allowed

to seek for molar fractions c in the form c = c¦ + c̃ where c̃m = c̃O
m + ξI

mc̃I
m + ξII

m c̃II
m.

Then (17) degenerates to

Bc̃′ + Kc̃ + vNc̃−N
C̃

τ
= FO + ξIF

I + ξIIF
II

with C̃ integrated from c̃ (for comparison: C is integrated from c− ca) and with

FO = N
C× − cax

τ
, F I =

(
N

x

τ
−K

)
c¦e , F II = −NΩvc¦e .

Thus we are able to solve all c̃O, c̃I and c̃II separately (which is very simple) and just
at the end to calculate ξI and ξII (q − 1 + r)-times from the system of two linear
algebraic equations

[
C̃LI

m /τ − vc̃LI
m + c¦emxL/τ C̃LII

m /τ − vc̃LII
m

C̃RI
m /τ − vc̃RI

m + c¦emxR/τ C̃RII
m /τ − vc̃RII

m

]
·
[

ξI
m

ξII
m

]
=

[
−C̃LO

m /τ + vc̃LO
m + CL×

m /τ + ca
mxL/τ

−C̃RO
m /τ + vc̃RO

m + CR×
m /τ + ca

mxR/τ

]
.

The above sketched algorithm have been tested with the support of standard
MATLAB environment. No special packages were needed, except the toolbox sym-
bolic, referring to the core of MAPLE. Typically the material description for one
calculation, generated for a fixed temperature of phase transformation, contain thou-
sands of instructions; the most complicated are the expressions for chemical poten-
tials in particular phases, especially their nonlinear parts, occurring as the last ad-
ditive terms in the decomposition (11). Open questions are both in the theory of
existence of solutions c and v and in the convergence of all algorithms. Some modi-
fications of such algorithms, namely the application of higher-order Hermite splines
(in the approximation of both unknown molar fractions and material characteris-
tics) and of the spectral analysis in the phases α and γ, far from the interface, where
nearly exponential distributions of molar fractions can be expected, are discussed
in [15], p. 79.

The rather complicated non-local integro-differential character of the problem
does not admit the application of some transparent homogenization technique. More-
over, the identification of material characteristics, included in B, K and N , is very
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complicated; consequently it is not clear how to formulate and study the inverse prob-
lems (formulation of all chemical potentials and diffusion factors, generating B, K
and N , and setting the interface mobility M , the interface thickness h, etc., from ex-
perimental results for c(x, t) at some set of fixed guaranteed temperatures) correctly.
Most material characteristics can be classified as a semi-empirical ones, based both
on some physical considerations and on the extensive experimental study, unfortu-
nately not covering all mole fractions of particular components between 0 and 1.
Moreover no physical barrier is incorporated into our system of equations to pre-
vent negative or other non-realistic mole fractions; very different quantitative values
of some characteristics, namely of the interface mobility M , can be found in the
literature, too.

4. Numerical example

The numerical example, presented in this paper, makes use of the same source
of quantitative material data as [14] from the Montanuniversität Leoben (Austria)
and from the Institute of Physics of Materials of the Czech Academy of Sciences in
Brno. We have the purely substitutional three-component Fe-Cr-Ni system; in our
notation q = 3 and r = 0, moreover Fe will be dominant.

The tracer diffusion coefficients can be interpolated using the formula

lnDk = wf lnDf
k ,

thus it is sufficient to set nine values Df
k . In general we have

Df
k = D

f

k0 exp

(
−Ef

RT

)
, M = M0 exp

(
− E?

RT

)
.

The applied constants are for Cr (corresponding to k = 1) Dα
10 = 0.00032 m2 s−2,

Dβ
10 = 0.00022 m2 s−2, Dγ

10 = 0.00035 m2 s−2, for Ni (k = 2) Dα
20 = 0.000048 m2 s−2,

Dβ
20 = 0.000022 m2 s−2, Dγ

20 = 0.000035 m2 s−2, for Fe (k = 3) Dα
30 = 0.00016 m2 s−2,

Dβ
30 = 0.00011 m2 s−2, Dγ

30 = 0.00007 m2 s−2, and for all components Eα = 240000
Jmol−1, Eβ = 155000 Jmol−1, Eγ = 286000 J mol−1, E? = 140000 Jmol−1; it
remains to set only M0 = 0.00041 m2 s kg−1.

Three figures show the time-variable distributions of c1 and c2. The interface
thickness is h = 5 · 10−10 m, the sample length H = 10−4 m. From the originally
constant mole fractions c1 = 0.001 and c2 = 0.019 (consequently c3 = 0.980) in all
phases due to the phase transformation driven by changes in chemical potentials, the
time development from t = 0 to t = 70000 s leads to qualitative new distributions.
All figures make use of the same computational results at various scales: Fig. 1 shows
Cr and Ni (strongly nonlinear) mole fractions inside the interface, Fig. 2 documents
different behaviour of Cr and Ni components near the interface, Fig. 3 demonstrates
quasi-constant distributions with seemingly sharp interface, whose physically trans-
parent macroscopic description is not available. The numbers of particular curves
from {1, . . . , 7} (quite omitted in Fig. 1, somewhere hardly recognizable even for
larger scales) refer to t ∈ {10000, . . . , 70000} s.
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Fig. 1: Nano-scale distribution of Cr and Ni inside the interface.
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Fig. 2: Meso-scale distribution of Cr and Ni near the interface.
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Fig. 3: Larger-scale observable distribution of Cr and Ni.
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5. Conclusions and generalizations

In our numerical example we have seen the typical non-stationary behaviour
of one special Fe-rich Fe-Cr-Ni substitutional system, described by (16) and (9),
with respect to the physical limitations (a finite closed system, interface of con-
stant thickness, substitutional components). However, the created software has been
tested for more classes of problems of practical importance. In [14] the stationary
solver was applied to the Fe-rich Fe-Cr-Ni substitutional system with various types
of chemical potentials and values of material characteristics, which may be rather
uncertain in practice, namely in case of the interface mobility and thickness; further
numerical simulations has been done also for the similar system with the interstitial
C-component and for the binary Al-Mg system yet. For every fixed interface thick-
ness h the numerical simulations show that the interface velocity v decreases with
the increasing temperature T ; finally the phase transformation stops at certain crit-
ical temperature. This critical temperature increases with the increasing interface
thickness h; the limit case h → 0 returns the (less realistic) results for an idealized
sharp interface. The simulation of the massive γ → α transformation shows that the
existence of the solute drag in the interface influences the contact conditions at the
interface allowing the massive transformation to occur also in the two-phase region.
By choosing α and γ as identical phases and by imposing fluxes to the interface (grain
boundary), diffusion induced grain boundary motion was simulated. The interface
and grain boundary Gibbs energy were calculated; their realistic values support the
responsibility of the model.

Both theoretical and experimental works yield that the diffusion in multi-com-
ponent alloys can be characterized by three attributes: a) the vacancy mechanism
for “slowly” diffusing substitutional components, b) the existence of certain sources
or sinks of vacancies, c) the “quick” motion of atoms of interstitial components. In
our description only the attributes a) and c) have been incorporated properly; the
attribute b) should be involved using the detailed analysis [11], referring to [3]. An-
other important research direction is to admit more complicated thermal processes.
This forces (from the point of view of the Onsager relation) coupling of various
fluxes, namely the particle flux due to a temperature gradient (Soret effect) and the
transport of heat due to a concentration gradient (Dufour effect); more information
is contained in [12]. Still another direction of possible generalizations leads to two-
or three-dimensional simulations. Up to now, such computations suffer from the
lack of reasonable material data; nevertheless, an introductory discussion is included
in [15], p. 85.
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DETERMINISTIC AND STOCHASTIC MODELS OF DYNAMICS
OF CHEMICAL SYSTEMS∗

Tomáš Vejchodský, Radek Erban

1. Introduction

The deterministic and stochastic models are two principal approaches for model-
ing of the dynamics of the chemical reactions. The deterministic models are usually
based on differential equations for concentrations (or amounts of molecules) of par-
ticular chemical species whereas the stochastic simulation algorithms (SSA) use the
pseudorandom number generators. Of course, different realizations of the SSA dif-
fer from each other, but a mean value over many realizations is a well reproducible
quantity which describes the average behavior of the system.

In this paper, we examine an example motivated by chemical processes in living
cells. In this example, we observe qualitatively different behaviors of the determinis-
tic and stochastic models. Namely, the solution of the deterministic model converges
to a stationary state while the stochastic solution exhibits an oscillatory character.
This discrepancy is caused by the fact that the deterministic model is inexact if the
number of molecules of a chemical species is too small. In this case, the more accu-
rate stochastic model should be used. However, the disadvantage of the stochastic
approach lies in its high computational cost. We show that certain quantities ob-
tained from the SSA can be computed as solutions of deterministic partial differential
equations which is much less computationally intensive.

2. Chemical system with SNIPER bifurcation

The chemical processes in cells often exhibit saddle-node infinite period (SNIPER)
bifurcation, see for example the model of the cell cycle regulation [3]. The following
simple system of seven chemical reactions exhibits the same behavior. We consider
two chemical species X and Y in a well-mixed reactor of volume V which are subject
to the following reactions

∅ k1d−→ Y
k2d−→ X

k3d−→ ∅ 2X
k4d−→←−
k5d

3X (1)

X + Y
k6d−→ X + 2Y 2X + Y

k7d−→ 2X. (2)

∗This work has been supported by grants No. 102/07/0496 of the Czech Science Foundation,
No. IAA100760702 of the Grant Agency of the Academy of Sciences and by the institutional research
plan No. AV0Z10190503 of the Academy of Sciences of the Czech Republic.
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Fig. 1: Nullclines of the ODE system (3) for k1d = 12 (left) and k1d = 13 (right). The
other parameter values are given by (4). The steady states are denoted by dots. Illustrative
trajectories which start close to the steady states are plotted as thin black lines. The stable
direction of the saddle is indicated by the dashed line.

Here k1d, . . . , k7d are the so-called rate constants which describe the speed of the
reactions. The symbol ∅ denotes the chemical species of no interest. Hence, for
example the first reaction is the production of Y from the source with the rate
constant k1d.

Let X = X(t) and Y = Y (t) stand for the number of molecules of the two
chemical species. If the numbers X and Y are sufficiently high then the dynamics of
the system (1)–(2) can be described by the mean-field ODE model

dx̃

dt
= k2d ỹ − k5d x̃

3
+ k4d x̃

2 − k3d x̃,
dỹ

dt
= −k7d x̃

2
ỹ + k6d x̃ ỹ − k2d ỹ + k1d, (3)

where x̃ = X/V and ỹ = Y/V stand for the concentrations of X and Y , respectively.
We choose the values of the rate constants as

k1d = 12 [sec−1mm−3], k2d = 1 [sec−1], k3d = 33 [sec−1], k4d = 11 [sec−1mm3],

k5d = 1 [sec−1mm6], k6d = 0.6 [sec−1mm3], k7d = 0.13 [sec−1mm6]. (4)

In this case the nullclines dx̃/dt = 0 and dỹ/dt = 0 intersect at three steady states
denoted by SN (stable node), Saddle, and UF (unstable focus), see Figure 1 (left),
where also illustrative trajectories are shown. We observe that the system converges
to the steady state at the SN. However, if we change the bifurcation parameter k1d

to have the value 13, we observe the behavior shown in Figure 1 (right). The system
possesses a periodic solution.

The SN and the Saddle lie on the invariant cycle, which is a union of these two
steady states and two heteroclinic trajectories connecting these steady states. While
increasing the value of k1d, the SN and the Saddle collaps into a single steady state
which disappears if we increase the value of k1d over a critical value Kd

.
= 12.2. This

is known as the SNIPER bifurcation.
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Fig. 2: Trajectories of the deterministic and stochastic models for k1d = 12.

In Figure 2 we may compare the trajectories of the deterministic model (3) and
the stochastic model for the parameter values given by (4). Notice the convergence
of the deterministic solution to the steady sate and the oscillatory behavior of the
stochastic solution. On the other hand if we change the bifurcation parameter to
k1d = 13 then both deterministic and stochastic models oscillate.

3. Gillespie stochastic simulation algorithm

The stochastic trajectories in Figures 2 were obtained by the Gillespie SSA [2].
To describe this algorithm we define the following propensity functions

α1(x, y) = k1, α2(x, y) = k2y, α3(x, y) = k3x, α4(x, y) = k4x(x− 1),

α5(x, y) = k5x(x− 1)(x− 2), α6(x, y) = k6xy, α7(x, y) = k7x(x− 1)y, (5)

where k1 = k1dV, k2 = k2d, k3 = k3d, k4 = k4d/V, k5 = k5d/V
2, k6 = k6d/V, k7 =

k7d/V
2 are the scaled rate constants. The Gillespie SSA follows these steps.

1. Generate two random numbers r1, r2 uniformly distributed in (0, 1).

2. Compute the cumulative propensity function α0(t) =
7∑

i=1

αi(X(t), Y (t)).

3. Compute the time interval to the next reaction τ =
1

α0(t)
ln

(
1

r1

)
.

4. At time t + τ the j-th reaction takes place. Determine j by

1

α0(t)

j−1∑
i=1

αi(X(t), Y (t)) ≤ r2 <
1

α0(t)

j∑
i=1

αi(X(t), Y (t)).

5. Update the numbers of reactants and products according to the j-th reaction.

6. Put t := t + τ and go to 1.
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Fig. 3: The mean period of oscillations of the deterministic (dashed line, see [1] for details)
and stochastic (points) models as a function of k1d for V = 40 (left) and as a function of V
for the bifurcation value k1d = Kd

.= 12.2 (right). Two estimates computed by formula (12)
with different γ are indicated by gray lines.

4. Period of oscillations

An important characteristic of the chemical system (1)–(2) is the mean period of
its oscillations. This period is shown in Figure 3 for both deterministic and stochastic
models. The periods for the stochastic model are computed as an average over 10 000
realizations which is computationally intensive. Here, we show that these values can
be obtained by solving and analyzing the chemical Fokker-Planck equation.

The stationary chemical Fokker-Planck equation for the stationary distribution Ps,
see [1] for more details, can be formulated in the following way

− div(A∇Ps + Psb) = 0, (6)

where A = −
(

dx dxy/2
dxy/2 dy

)
, b =

(
vx − ∂dx

∂x
− 1

2

∂dxy

∂y
, vy − ∂dy

∂y
− 1

2

∂dxy

∂x

)
,

and vx = α2 − α3 + α4 − α5, vy = α1 − α2 + α6 − α7, dx = [α2 + α3 + α4 + α5]/2,
dy = [α1 + α2 + α6 + α7]/2, dxy = −α2.

The stationary distribution Ps = Ps(x, y) is normalized to satisfy

∫ ∞

0

∫ ∞

0

Ps(x, y) dxdy = 1, Ps(x, y) ≥ 0, (x, y) ∈ [0,∞)× [0,∞). (7)

Here, Ps(x, y) is the probability that X(t) → x and Y (t) → y as t → ∞. To
find numerically the stationary distribution Ps for system (1)–(2) with parameter
values (4) we truncate the infinite domain (0,∞)×(0,∞) to S = (0, 500)×(0, 2000),
denote by n is the unit outward normal vector to ∂S and prescribe the boundary
conditions

(A∇Ps + Psb) · n = 0 on ∂S. (8)
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Fig. 4: The stationary distribution Ps,h (left) and the mean exit time τh (right).

The finite element solution Ps,h to problem (6)–(8) is derived in a standard way and
it is determined by the requirements Ps,h ∈ Wh and

∫

S

(A∇Ps,h + Ps,hb
) · ∇ϕh dxdy = 0 ∀ϕh ∈ Wh,

where Wh is a suitable finite dimensional subspace of the Sobolev space H1(S). In
our case Wh consists of continuous and piecewise linear functions over a triangulation
of S. The finite element solution Ps,h is provided in Figure 4 (left). Alternatively, the
stationary distribution can be obtained by computationally very intensive long time
stochastic simulations. However, the numerical solution of (6)–(8) is much faster and
equally accurate as the stochastic simulations.

Let us point out that equation (6) with boundary condition (8) possesses a trivial
solution Ps = 0 but we are interested in a nontrivial one. We obtain the nontrivial
approximation Ps,h by a standard software for computation of eigenvectors corre-
sponding to the zero eigenvalue of a sparse matrix. The resulting solution is then
normalized to satisfy (7) with the integrals taken over S.

The stationary distribution, see Figure 4 (left), shows that the system spends
most of the time in the strip X < 200. Observing Figure 2 we may say that an
oscillation occurs if X > 200. The stationary distribution Ps is almost zero for
x > 200 and therefore, it is very unlikely to find the system in a state with
X > 200. Thus, we neglect the time the system spends in the halfplane X > 200
and approximate the mean period of oscillations as the average time to leave the
domain X < 200 provided the system just entered it.

To this end, we define the subdomain S̃ = (0, 200)× (0, 2000) of S and formulate
the adjoint equation to (6) with suitable boundary conditions

− div(A∇τ) + b · ∇τ = −1 in S̃, (9)

τ = 0 on the line x = 200, (10)

(A∇τ) · n = 0 on lines y = 0, y = 2000, x = 0. (11)
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The quantity τ = τ(x, y) is known [1] to model the average time to leave S̃ provided
the system is in the state X(t) = x and Y (t) = y. The finite element approximation

τh ∈ W̃h of τ is uniquely determined by the identity

∫
eS

(A∇τh

) · ∇ϕh dxdy +

∫
eS
b · ∇τh ϕh dxdy =

∫
eS
−1 · ϕh dxdy ∀ϕh ∈ W̃h,

where W̃h is a space of continuous and piecewise linear functions over a triangulation
of S̃. The finite element solution τh of (9)–(11) is presented in Figure 4 (right).

The actual period of oscillations T is estimated as a weighted average of the exit
times over a suitably chosen set (line segment) γ

T (γ) =

∫

γ

τ(x, y) Ps(x, y) dγ

/∫

γ

Ps(x, y) dγ. (12)

A natural choice of the line segment is γ = {(x, y) : x = xf , 0 ≤ y ≤ yf}, where
(xf , yf ) is the unstable focus of the system dx/dt = vx and dy/dt = vy, cf. (3).
However, if the line segment γ is slightly shifted to x = 0.87xf then formula (12)
provides more accurate results, as we can observe in Figure 3. The left panel shows
the period of oscillations as a function of k1d and the right one as a function of V .

5. Conclusions

To conclude, we stress that the period of oscillation can be computed by (12)
using the solution of the Fokker-Planck equation (6) and of the τ -equation (9) with
no need of long time stochastic simulations. Figure 3 shows the accuracy of this
approach.

The presented technique is not limited to simple system (1)–(2). It can be applied
for example to systems with more than two chemical species which are of great in-
terest especially in the cell cycle modeling. This however requires numerical solution
of high dimensional Fokker-Planck and τ -equations.
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LIMITED-MEMORY VARIABLE METRIC METHODS
BASED ON INVARIANT MATRICES∗

Jan Vlček, Ladislav Lukšan

We present a new family of limited-memory variationally-derived variable met-
ric (VM) line search methods with quadratic termination property (see [4]) for un-
constrained minimization. Starting with x0∈RN , VM line search methods (see [4])
generate iterations xk+1 ∈ RN by the process xk+1 = xk + sk, sk = tkdk, where the
direction vectors dk ∈ RN are descent, i.e. gT

k dk < 0, and the stepsizes tk > 0 satisfy

f(xk+1)− f(xk) ≤ ε1tkg
T
k dk, gT

k+1dk ≥ ε2g
T
k dk, (1)

k≥0, with 0<ε1 <1/2 and ε1 <ε2 <1, where f is an objective function, gk = ∇f(xk).
We denote yk = gk+1 − gk, k ≥ 0 and by ‖.‖F the Frobenius matrix norm.

1. A new family of limited-memory methods

Our methods are based on approximations H̄k = UkU
T
k , k > 0, H̄0 = 0, of

the inverse Hessian matrix, which are invariant under linear transformations (it is
significant in case of ill-conditioned problems), where N × min(k, m) matrices Uk,
1 ≤ m ¿ N , are obtained by limited-memory updates that satisfy the quasi-Newton
condition

H̄k+1yk = sk or equivalently UT
+y = z, U+z = s, zT z = b. (2)

We frequently omit index k, replace index k+1 by symbol +, index k−1 by symbol −
and denote Vr = I − ryT/rT y for r ∈ RN , rT y 6= 0 (projection matrix),

B = H−1, b = sTy>0, ā = yTH̄y, b̄ = sTBH̄y, c̄ = sTBH̄Bs, δ̄ = āc̄− b̄2≥0.

Standard VM updates can be derived as updates with the minimum change of
VM matrix (see [4]), which we extend to limited-memory methods (see [6], [7]).

Theorem 1.1. Let T be a symmetric positive definite matrix, z ∈ Rm, 1 ≤ m ≤ N ,
p = Ty, and U the set of N ×m matrices. Then the unique solution to min{ϕ(U+) :
U+ ∈ U} s.t. (2), where ϕ(U+) = yT Ty ‖T−1/2(U+ − U)‖2

F , is

U+ =szT/b +Vp U
(
I−zzT /zTz

)
, H̄+ =ssT/b +Vp U

(
I−zzT /zTz

)
UT V T

p . (3)

∗This work was supported by the Grant Agency of the Czech Academy of Sciences, project
No. IAA1030405, and the Institutional research plan No. AV0Z10300504
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Updates (3) can be invariant under linear transformations, i.e. can preserve the
same transformation property of H̄ = UUT as inverse Hessian (see [7]).

Theorem 1.2. Consider a change of variables x̃ = Rx + r, where R is N × N
nonsingular matrix, r ∈ RN . Let p ∈ span{s, H̄y, Uz} and suppose that z and
coefficients in the linear combination of vectors s, H̄y and Uz forming p are invariant
under the transformation x → x̃, i.e. they are not influenced by this transformation.
Then for Ũ = RU matrix U+ given by (3) also transforms to Ũ+ = RU+.

In the special case (this choice satisfies the assumptions of Theorem 1.2)

p = (λ/b)s + [(1− λ)/ā]H̄y if ā 6= 0, p = (1/b)s, λ = 1 otherwise (4)

we can easily compare (3) with the Broyden class update of H̄ with parameter η = λ2,
to obtain H̄+ = H̄BC

+ − VpUz(VpUz)T /zTz , where H̄BC
+ = ssT/b + VpH̄V T

p (see [6]).

The last update is useful for starting iterations. Setting U+ = [
√

1/b s] in the first

iteration, every such update modifies U and adds one column
√

1/b s to U+. Except
for the starting iterations, we will assume that matrix U has m ≥ 1 columns.

To choose parameter z, we utilize analogy with standard VM methods (see [7]).

Lemma 1.3. Let H = SST with N × N matrix S and let z = α(ST Bs + θST y),
α, θ ∈R, with zT z = b. Then every update (3) with S, S+, S+ST

+ instead of U , U+,
H̄+ and with p given by (4) belongs to the scaled Broyden class with

η = λ2 − b α2 yTHy
(
θλ/b− (1− λ)/yT Hy

)2
. (5)

Thus we concentrate here on the choice z = α(ST Bs + θST y), zT z = b. Lemma 1.4
(see [7]) gives simple conditions for this z to be invariant under linear transformations.

Lemma 1.4. Let number θ/t be invariant under transformation x̃=Rx + r, where
t is the stepsize, R is N × N nonsingular matrix and r ∈ RN , and suppose that
Ũ =RU . Then vector z used in Lemma 1.3 is invariant under this transformation.

We use the choice θ = −b̄/ā. Then θ/t is invariant and zT z = b gives (if āδ̄ = 0,

we do not update) z = ±
√

b/(āδ̄) (ā UTBs− b̄ UTy), yT Uz = 0, and VpUz = Uz.

2. Variationally-derived simple correction

To have matrices H̄k invariant, we use such updates that −H̄kgk cannot be used
as the direction vectors dk. Thus we find the minimum correction (in the sense of
Frobenius matrix norm, see [7]) of matrix H̄+ +ζI, ζ > 0, in order that the resultant
matrix H+ may satisfy the quasi-Newton condition H+y = s. First we give the
projection variant of the well-known Greenstadt’s theorem, see [3].

For M = H̄+ + ζI, the resulting correction (8) together with update (3) give our
family of limited-memory VM methods.
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Theorem 2.1. Let M,W be symmetric matrices, W positive definite, q = Wy and
denote M the set of N×N symmetric matrices. Then the unique solution to

min{‖W−1/2(M+ −M)W−1/2‖F : M+ ∈M} s.t. M+y = s (6)

is given by Vq (M+ −M) V T
q = 0 and can be written (the usual form is on the right)

M+ =E+Vq (M−E)V T
q ≡ M+ (wqT+qwT )/qTy − wTy · qqT /(qTy)2 , (7)

where E is any symmetric matrix satisfying Ey = s, e.g. E = ssT/b, w = s−My.

Theorem 2.2. Let W be a symmetric positive definite matrix, ζ > 0, q = Wy and
denote M the set of N × N symmetric matrices. Suppose that matrix H̄+ satisfies
the quasi-Newton condition (2). Then the unique solution to

min{‖W−1/2(H+ − H̄+ − ζI)W−1/2‖F : H+ ∈M} s.t. H+y = %s

is H+ = H̄+ + ζVqV
T
q . (8)

As regards parameter ζ, the widely used choice is ζ = b/yTy which minimizes
|(H̄+ − ζI)y|. We can obtain slightly better results, e.g. by the choice

ζ = % b/(yT y + 4 ā). (9)

The following lemmas (see [7]) help us to obtain vector q in such a way that correc-
tions (7), (8) represent the Broyden class updates of H̄++ζI with parameter η.

Lemma 2.3. Let A be a symmetric matrix and denote a = yT Ay. Then every
update (7) with M = A, M+ = A+, q = s− αAy, a 6= 0, and αa 6= b represents the
Broyden class update with parameter η = (b2 − α2ab )/(b− αa)2.

Lemma 2.4. Let ζ > 0, κ = ζ yTy/b, η > −1/(1 + κ) and let matrix H̄+ satisfy
the quasi-Newton condition (2). Then correction (8) with q = s − σy, where σ =

b(1±
√

(1 + κ)/(1 + ηκ) )/yTy represents the Broyden class update of matrix H̄+ +ζI
with parameter η.

For q = s, i.e. η = 1, we get the BFGS update. Better results were obtained
with the formula, based on analogy with the shifted VM methods (see [6], [7]):

η = min [1, max [0 , 1 + (1/κ)(1 + 1/κ) (1.2 ζ−/(ζ− + ζ)− 1)]] . (10)

3. Correction formula

Corrections in Section 2 respect only the latest vectors sk, yk. Thus we can
again correct (without scaling) matrices Ȟk+1 = H̄k+1 + ζkVqk

V T
qk

, k > 0, obtained
from (8), using previous vectors si, yi, i = k−j, . . . , k−1, j ≤ k. Our experiments
indicate that the choice j = 1 brings the maximum improvement. This leads to the
formula H+ = ssT /b + Vs

[
s−sT

−/b− + V −
s

(
H̄+ + ζVqV

T
q

)
(V −

s )T
]
V T

s , where V −
s =

I − s−yT
−/b−, which is less sensitive to the choice of ζ than (8).
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4. Quadratic termination property

We give conditions for our family of limited-memory VM methods with exact line
searches to terminate on a quadratic function in at most N iterations (see [7]).

Theorem 4.1. Let m ∈ N be given and let Q(x) = 1
2
(x − x∗)T G(x − x∗), where

G is an N × N symmetric positive definite matrix. Suppose that ζk > 0, tk > 0,
k ≥ 0, and that for x0 ∈ RN iterations xk+1 = xk + sk are generated by the method
sk = −tkHkgk, gk = ∇Q(xk), k ≥ 0, with exact line searches, i.e. gT

k+1sk = 0, where

H0 = I, Hk+1 = Uk+1U
T
k+1 + ζkVqk

V T
qk

, k ≥ 0, (11)

N ×min(k, m) matrices Uk, k > 0, satisfy

U1 =
[
s0/

√
b0

]
, Uk+1U

T
k+1 = sks

T
k /bk + Vpk

UkU
T
k V T

pk
, 0 < k < m, (12)

Uk+1U
T
k+1 = sks

T
k /bk + Vpk

Uk

(
I − zkz

T
k /zT

k zk

)
UT

k V T
pk

, zk∈ Rm, k ≥ m, (13)

vectors pk, qk, k > 0, lie in range([Uk, sk]) and satisfy pT
k yk 6= 0, qT

k yk 6= 0, and
q0 = s0. Then there exists a number k̄ ≤ N with gk̄ = 0 and xk̄ = x∗.

5. Computational experiments

Our VM methods were tested, using the collection [5] of sparse, usually ill-
conditioned problems for large-scale nonlinear least squares (Test 15, 21 problems)
with N =500 and 1000, m=10, ζ given by (9) and the final precision ‖g(x?)‖∞≤10−5.

N = 500 N = 1000
ηp Corr-0 Corr-1 Corr-2 Corr-q Corr-0 Corr-1 Corr-2 Corr-q

0.0 2-76916 32504 22626 24016 3-99957 1-58904 44608 1-47204
0.1 3-99032 36058 21839 35756 3-98270 1-54494 42649 1-47483
0.2 2-97170 29488 23732 29310 3-89898 1-52368 36178 1-44115
0.3 1-79978 28232 18388 18913 3-80087 47524 33076 38030
0.4 1-70460 24686 18098 17673 3-78498 44069 32403 34437
0.5 60947 22532 17440 17181 3-88918 41558 32808 31874
0.6 56612 21240 17800 17164 2-76264 38805 31854 30784
0.7 52465 20289 17421 17021 2-72626 39860 32345 30802
0.8 51613 20623 17682 17076 1-69807 37501 32292 32499
0.9 50877 20548 18102 17424 2-69802 38641 32926 31385
1.0 49672 20500 18109 17913 1-68603 38510 33539 32456
1.1 52395 20994 18694 18470 1-65676 41284 35103 33053
1.2 51270 21444 19230 18372 1-68711 41332 35649 34028
1.5 1-51094 22808 20487 20060 2-66220 42906 36775 36323
2.0 1-50776 24318 21710 21639 2-66594 46139 40279 39199

BNS 18444 33131

Tab. 1: Comparison of various correction methods.
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Results of these experiments are given in two tables, where ηp = λ2 is the value
of parameter η of the Broyden class used to determine parameter p by (4) and ηq is
the value of this parameter used in Lemma 2.4 to determine parameter q = s− σy.

In Table 1 we compare the method described in [2] (BNS) with our new family,
using various values of ηp and the following correction methods: Corr-0 – the
adding of matrix ζI to H̄+, Corr-1 – correction (8), Corr-2 – correction from Section 3.
We use ηq = 1 (i.e. q = s) in columns Corr-0, Corr-1 and Corr-2 and ηq given by (10)
in columns Corr-q together with correction from Section 3. We present the total
numbers of function and also gradient evaluations (over all problems), preceded by
the minus-sign with the number of problems (if any occurred) which were not solved
successfully (the number of evaluations reached its limit 19000 evaluations).

ηp , N = 500 ηp , N = 1000
ηq 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0 -343 -394 -967 -813 -538 32 141 1916 -912 -681 -876 -119 -744 116
0.1 211 -1154 -1028 -1100 -880 -585 -188 1052 -732 -974 -1647 -1043 -1215 320
0.2 2424 1902 1759 2088 1869 2268 2746 903 -187 -1669 -1708 -1219 -28 -567
0.3 -492 -1064 -1136 -992 -1036 -901 -939 793 -363 -975 -1731 -289 360 -484
0.4 -599 -1069 -718 -1160 -668 -934 -512 925 -1398 -1708 -1554 -1184 -498 -482
0.5 -493 -722 -727 -665 -487 -516 -399 -757 -644 -965 -1729 -1380 -926 -207
0.6 -251 -648 -798 -965 -750 -176 -371 1 -1396 -1291 -835 -1044 -767 190
0.7 -342 -764 -441 -320 -474 -749 -284 -195 -901 -356 -1019 -1482 -398 -454
0.8 -481 -706 -857 -579 -449 -497 -606 -770 -690 -1763 -886 -1009 -256 -977
0.9 -872 -759 -370 -559 -820 275 -135 8 -821 -939 -674 -696 -764 657
1.0 -346 -1004 -644 -1023 -762 -342 -335 -728 -323 -1277 -786 -839 -205 408
1.1 1939 1265 2326 791 2444 1958 1910 -773 115 183 48 -411 -619 736
1.2 1024 700 719 1452 967 1479 1982 269 155 -670 295 -649 -113 647
1.5 -596 -436 -912 -937 -770 -285 307 377 -181 -29 908 1323 441 1310
2.0 150 -396 85 259 336 222 684 2164 767 994 2035 2577 2869 3036
(10) -771 -1263 -1280 -1423 -1368 -1020 -531 1306 -1257 -2347 -2329 -632 -1746 -675

Tab. 2: Comparison with BNS for various ηp, ηq.

In Table 2 we give the differences np,q − nBNS, where np,q is the total number
of function and also gradient evaluations (over all problems) for selected values of
ηp and ηq with correction from Section 3 and nBNS is the number of evaluations for
method BNS (negative values indicate that our method is better than BNS). In the
last row, we present this difference for ηq given by (10).

For a better comparison with method BNS, we performed additional tests with
problems from the widely used CUTE collection [1] with various dimensions N
and the final precision ‖g(x?)‖∞ ≤ 10−6. In Table 3 we give the values of (np,q −
nBNS)/(np,q + nBNS) ∗ 100 for ηp = ηq = 0.5 (all the others are the same as above).

Our limited numerical experiments indicate that methods from our new family
can compete with the well-known BNS method.
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Problem N % Problem N % Problem N %
ARWHEAD 5000 =0 BDQRTIC 5000 16 BROWNAL 500 =0
BROYDN7D 2000 -3 BRYBND 5000 -2 CHAINWOO 1000 -0
COSINE 5000 22 CRAGGLVY 5000 =0 CURLY10 1000 -5
CURLY20 1000 -9 CURLY30 1000 -3 DIXMAANA 3000 4
DIXMAANB 3000 21 DIXMAANC 3000 10 DIXMAAND 3000 12
DIXMAANE 3000 23 DIXMAANF 3000 28 DIXMAANG 3000 30
DIXMAANH 3000 22 DIXMAANI 3000 50 DIXMAANJ 3000 38
DIXMAANK 3000 27 DIXMAANL 3000 41 DQRTIC 5000 59
EDENSCH 5000 -2 EG2 1000 =0 ENGVAL1 5000 7
EXTROSNB 5000 -3 FLETCBV2 1000 3 FLETCHCR 1000 11
FMINSRF2 1024 9 FMINSURF 1024 4 FREUROTH 5000 19
GENHUMPS 1000 9 GENROSE 1000 -4 LIARWHD 1000 2
MOREBV 5000 =0 MSQRTALS 529 3 NCB20 510 20
NCB20B 1010 12 NONCVXU2 1000 -19 NONCVXUN 1000 <−35
NONDIA 5000 -22 NONDQUAR 5000 64 PENALTY1 1000 -2
PENALTY3 100 -1 POWELLSG 5000 11 POWER 1000 64
QUARTC 5000 61 SCHMVETT 5000 -6 SINQUAD 5000 7
SPARSINE 1000 -2 SPARSQUR 1000 -2 SPMSRTLS 4999 -4
SROSENBR 5000 -10 TOINTGSS 5000 -8 TQUARTIC 5000 -9
VARDIM 1000 1 VAREIGVL 1000 -8 WOODS 4000 11

Tab. 3: Comparison with BNS for CUTE.
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e-mail: berkat@kma.zcu.cz

Marek Brandner, Ing., Ph.D.
Katedra matematiky
Fakulta aplikovaných věd ZČU v Plzni
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Technická 5, 166 28 Praha 6 Dejvice
e-mail: lubor.buric@vscht.cz
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Ústav nauky o dřevě
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Ústav exaktńıch věd
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Ústav technické matematiky
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Fakulta strojńı ČVUT v Praze
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