▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Selected aspects of hp-FEM in 3D

P. Kůs P. Šolín T. Vejchodský

June 3, 2008

Numerical example

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Outline

- 2 Base functions
 - H1 space
 - Hcurl space
- 3 Hanging nodes
 - Regularity rules
 - Hanging nodes in 3D

Behavior of the solution

- Goal obtain accurate approximation using as small discrete system, as possible
- Behavior of solution can differ over the domain
 - Smooth
 - Singularity
 - Boundary layer
- Each requires different approach
 - Large higher-order elements
 - Small low-order elements
 - ...
- hp-FEM allows us to use optimal elements in each part of the computational domain

Numerical example

Automatic adaptivity

- Calculate the solution
- 2 Calculate the reference solution
- Estimate the error on each element
- Sort elements according to the error
- For elements with big error
 - Construct list of refinement candidates
 - Project the reference solution on each candidate
 - Stimate the error and choose the best candidate
- Perform refinements and continue, until error is decreased to desired tolerance

Numerical example

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Refinement candidates

- Split the element h adaptivity
- Increase polynomial degree p adaptivity
- Do one of previous or split the element and redistribute polynomial degrees – hp adaptivity
 - Best results
 - Exponential convergence
 - Complicated to implement

hp-	F	E	N	1

Base functions

Hanging nodes

Numerical example

э.

H1 space

Elliptic problem

We solve the problem

$$\begin{aligned} -\Delta u &= f \quad \text{in } \Omega, \\ u &= u_D \quad \text{on } \Gamma_D, \\ \frac{\partial u}{\partial \nu} &= g \quad \text{on } \Gamma_N \end{aligned}$$

Weak formulation

$$(u, v)_{\Omega} = (f, v)_{\Omega} + (g, v)_{\Gamma_N}$$

Space for *u*

$$V = \{ u \in H1, \quad u = u_D \quad \text{on } \Gamma_D \}$$

and faces.

Base functions

Hanging nodes

Numerical example

H1 space

Hexahedral shape functions

Hanging nodes

Numerical example

Hcurl space

Time-Harmonics Maxwell's Equations

$$abla imes (\mu_r^{-1}
abla imes \mathbf{E}) - k^2 \epsilon_r \mathbf{E} = \mathbf{\Phi},$$

where

- $\mathbf{E} = \mathbf{E}(x)$ electric field intensity
- μ_r , ϵ_r relative permeability and permittivity
- k wawe number

Boundary conditions:

Perfect conductor boundary condition

$$\mathbf{E} \times \boldsymbol{\nu} = \mathbf{0}$$
 on Γ_P

Impedance boundary condition

$$\mu_r^{-1}(\nabla \times \mathbf{E}) \times \boldsymbol{\nu} - jk\lambda \mathbf{E}_{\mathbf{T}} = \mathbf{g}$$
 on Γ_l

where $\mathbf{E}_{\mathbf{T}} = (\boldsymbol{\nu} \times \mathbf{E}) \times \boldsymbol{\nu}$.

hp-	F	E	N	1

Numerical example

Hcurl space

Weak formulation

Space for **E**

$$V = \{ \mathbf{E} \in \mathbf{H}(curl, \Omega); \quad \boldsymbol{\nu} \times \mathbf{E} = \mathbf{0} \text{ on } \Gamma_P \}$$

The variational identity

$$a(\mathbf{E},\mathbf{F}) = I(\mathbf{F}), \text{ for all } \mathbf{F} \in V,$$

where

$$\begin{aligned} \boldsymbol{a}(\mathbf{e},\mathbf{f}) &= (\mu_r^{-1}\nabla\times\mathbf{e},\nabla\times\mathbf{f})_{\Omega} - k^2(\epsilon_r\mathbf{e},\mathbf{f})_{\Omega} - jk(\lambda\mathbf{e}_T,\mathbf{f}_T)_{\Gamma_I} \\ \boldsymbol{l}(\mathbf{f}) &= (\mathbf{\Phi},\mathbf{f})_{\Omega} + (\mathbf{g},\mathbf{f}_T)_{\Gamma_I} \end{aligned}$$

▲□▶▲□▶▲□▶▲□▶ ▲□ ● ● ●

Base functions

Hanging nodes

Numerical example

(日) (日) (日) (日) (日) (日) (日)

Hcurl space

Conformity requirements

Space

$$\mathbf{H}(\mathit{curl},\Omega) = \{\mathbf{E} \in (L^2(\Omega))^3; \quad \nabla \times \mathbf{E} \in (L^2(\Omega))^3\}$$

Polygonal domain Ω_h , Finite element mesh

- $\mathbf{E}|_{K} \in (H^{1}(K))^{3}$ for each element K
- For each element interface *f* = *K*₁ ∩ *K*₂ the traces of the tangential components are the same:

$$oldsymbol{
u}_f imes \mathbf{E}|_{\mathcal{K}_1} = oldsymbol{
u}_f imes \mathbf{E}|_{\mathcal{K}_2}$$

Base functions

Hanging nodes

Numerical example

Hcurl space

Hcurl base functions

Base functions

Hanging nodes

Numerical example

Hcurl space

Hcurl edge base functions

Base functions

Hanging nodes

Numerical example

Hcurl space

Hcurl edge base functions

Base functions

Hanging nodes

Numerical example

Hcurl space

Hcurl face base functions

Base functions

Hanging nodes

Numerical example

Hcurl space

Hcurl face base functions

Base functions

Hanging nodes

Numerical example

Hcurl space

Hcurl bubble base functions

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Regularity rules

Regularity of mesh

- \bullet When element refined \longrightarrow hanging nodes appear
- In order to keep code simple, we can regularize mesh
 - We are not refining locally
 - We make a lot of unnecessary refinements → size of problem grows with no effect on quality of solution
- Compromise regularity rules
- Best results arbitrary level hanging nodes
 - Refining locally
 - No unnecessary refinements
 - Implementation more demanding
 - We use this approach

Numerical example

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Regularity rules

Constrained approximation

- We have to construct base functions to satisfy conformity conditions
 - H1 space continuity in vertices and along edges and faces
 - Hcurl space continuity of tangential components along edges and faces
- In constrained edges and faces no DOFs
- Calculate combnation of shape functions

Base functions

Hanging nodes

Numerical example

Hanging nodes in 3D

Model situation

Base functions

Hanging nodes

Numerical example

Hanging nodes in 3D

Edges constraining vertices

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ● ● ●

Base functions

Hanging nodes

Numerical example

Hanging nodes in 3D

Edges constraining edges

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ● ● ●

Base functions

Hanging nodes

Numerical example

Hanging nodes in 3D

Edges constraining edges

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ● ● ●

Base functions

Hanging nodes

Numerical example

Hanging nodes in 3D

Face constraining edge

Base functions

Hanging nodes

Numerical example

Hanging nodes in 3D

Face constraining face

・ロト・日本・日本・日本・日本・日本

Base functions

Hanging nodes

Numerical example

Hanging nodes in 3D

More complicated situation

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ ��や

Base functions

Hanging nodes

Numerical example

Hanging nodes in 3D

Edge constrained indirectly

Base functions

Hanging nodes

Numerical example

Hanging nodes in 3D

Complicated situation

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ ○ < ○

Base functions

Hanging nodes

Numerical example

Hanging nodes in 3D

Part of the domain of basis face function

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ●

Base functions

Hanging nodes

Numerical example

Hanging nodes in 3D

Part of the domain of basis face function

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Electrostatic problem

Distribution of electrostatic potential in the Fichera corner domain $\Omega=(-1,1)^3\setminus[0,1]^3$ We solve the problem

$$-\Delta u = f \text{ in } \Omega, \qquad (1)$$
$$u = u_D \text{ on } \partial\Omega, \qquad (2)$$

where f and u_D are chosen to comply with the exact solution

$$u(x_1, x_2, x_3) = (x_1^2 + x_2^2 + x_3^2)^{1/4},$$
(3)

- The solution is smooth
- The gradient has singularity at (0,0,0)

Numerical example

Exact solution

Base functions

Hanging nodes

Numerical example

Gradient of the exact solution

Numerical example

hp-adaptivity – Fichera corner domain

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ ○ ○

Numerical example

hp-adaptivity – Fichera corner domain

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ ○ ○

Numerical example

hp-adaptivity – Fichera corner domain

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ ○ < ○

Numerical example

hp-adaptivity – Fichera corner domain

Numerical example

hp-adaptivity – Fichera corner domain

▲□▶▲□▶▲□▶▲□▶ □ のへぐ

Numerical example

hp-adaptivity – Fichera corner domain

Numerical example

hp-adaptivity – Fichera corner domain

Numerical example

hp-adaptivity – Fichera corner domain

Numerical example

hp-adaptivity – Fichera corner domain

◆□▶◆□▶◆目▶◆目▶ 目 のへぐ

Numerical example

hp-adaptivity – Fichera corner domain

◆□▶◆□▶◆目▶◆目▶ 目 のへぐ

Numerical example

hp-adaptivity – Fichera corner domain

Numerical example

hp-adaptivity – Fichera corner domain

Numerical example

Detail of the singularity

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Base functions

Hanging nodes

Numerical example

Convergence comparison

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ