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Averaged (a.k.a. Recovered) Gradient

Idea (in 2D): Let (ua
x , ua

y ) be an approximation of ∇u. By
processing (ua

x , ua
y ), we wish to obtain (ûa

x , ûa
y ), a better (more

accurate) approximation of ∇u.

Application: In FEM, ‖∇u − (uhx , uhy )‖L2 ≤ Ch, where uh is a
FE approximation to a BVP solution u. It can be
‖∇u − (ûhx , ûhy )‖L2 ≤ Ch2.

Various methods. We will use the method proposed in

I. Hlaváček, M. Křížek, V. Pištora: How to recover the gradient
of linear elements on nonuniform triangulations, Appl. Math. 41
(1996), 241-267

3 / 20



Recovered Gradient: Technique
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ai = (Ai − Z )i , bi = (Bi − Z )i , i = 1, 2(. . . d)

The weighted averaged gradient of function v at node Z

(Ghv(Z ))i = αiv(Ai) − (αi + βi)v(Z ) + βiv(Bi )

where

αi =
bi

ai(bi − ai)
, βi =

ai

bi(ai − bi)
.
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Properties I
Assumptions:
Ω ⊂ R

2 (R3), a bounded domain with a polygonal Lipschitz
boundary.
F , a strongly regular family of triangulations {Th}h→0, i.e.,

∃κ > 0 ∀Th ∈ F ∀K ∈ Th κh ≤ %K ,

where %K is the radius of a ball BK such that BK ⊂ K .

Theorem: Let q ∈ (1,∞) and v ∈ W 3
q (Ω). Then exists a

constant C > 0 such that

‖∇v − Ghv‖0,q ≤ Ch2|v |3,q

for any Th ∈ F .
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Properties II
An elliptic BVP

− div(λ∇u) = f in Ω,

u = 0 on ∂Ω,

where λ is a matrix comprising sufficiently smooth functions
(λ ∈ [W 2

2+ε(Ω)]2×2).

It is assumed that u ∈ W 3
q (Ω), q > 2.

Let us consider uh, the finite element approximation to u (p.-w.
linear basis functions).

Is Ghuh close to ∇u?
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Properties II
Assumptions: The family F = {Th}h→0 is generated by smooth
distortions of uniform triangulations of square grids.

(Then the linear interpolation of u
is sufficiently close to u.)

Ω0, a domain such that Ω0 ⊂ Ω

Theorem: ‖∇u − Ghuh‖0,2,Ω0
≤ C(u)h2.
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Sensitivity Analysis: Motivation
The weak formulation of the (simplified) BVP

∫
Ω

λ(x)∇u · ∇v dx =

∫
Ω

fv dx ∀v ∈ H1
0 (Ω), u ∈ H1

0 (Ω).

A unique solution u(λ; ·).

Criterion-functional: Ψ(λ) = Φ(u(λ))

Example (Parameter Identification)
A function w is given. The goal is to find λ that minimizes

Ψ(λ) =

∫
Ω

(w(x) − u(λ; x))2 dx .

Analogous settings appear in optimal design problems, the
worst scenario method, or PDE/ODE-constrained optimization.
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Sensitivity Analysis
In the search for

arg min
λ∈Uad

Ψ(λ),

where Uad is an admissible set of parameters, the derivative Ψ′

of Ψ w.r.t. λ is beneficial.

Remark: In discretized problems (FEM and a discretization of
Uad), Ψ(λ) is a function of several variables λ̂1, . . . , λ̂n and Ψ′

becomes ∇Ψ.

Let us focus on a particular approach to the Ψ′ calculation: the
formula for Ψ′ is derived from the "continuous" weak problem,
and then approximated by the solutions of discretized problems.
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In our problem, let
λ(x1, x2) = λ1 + λ2x1 + λ3x2 + λ4x2

1 + λ5x1x2 + +λ6x2
2 .

Then, for instance,

∂Ψ

∂λ4
(λ) = −

∫
Ω

x2
1∇u(x) · ∇z(x) dx ,

where z ∈ H1
0 (Ω) solves the adjoint equation

∫
Ω

λ(x)∇z · ∇v dx =

∫
Ω

2(u − w) dx ∀v ∈ H1
0 (Ω)

(the right-hand side equals the derivative of Φ(u) w.r.t. u).
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Generally (not only in our example!), Ψ′ is evaluated through
the integration of an expression containing ∇u and ∇z. Since
the accuracy of Ψ′ depends on the accuracy of the
approximations of ∇u and ∇z, the idea of recovering ∇uh and
∇zh, the FEM-computed gradients, emerged.
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Generally (not only in our example!), Ψ′ is evaluated through
the integration of an expression containing ∇u and ∇z. Since
the accuracy of Ψ′ depends on the accuracy of the
approximations of ∇u and ∇z, the idea of recovering ∇uh and
∇zh, the FEM-computed gradients, emerged.

The idea failed.

The gradient of Ψ computed by means of the recovered
gradient technique is not better than the gradient computed
directly.
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Why?

Reasons:

1. A bug in the code?
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Why?

Reasons:

1. A bug in the code?

2. A "boundary layer", where the averaging is inaccurate.
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Interpolation features of Gh, uniform mesh
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Interpolated function: xy(1 − x)(1 − y)
Euclid. norm of the difference between the calculated and the
exact gradient: p.-w. constant gradient (left), recovered gradient
(right).

13 / 20



Interpolation features of Gh, distorted mesh
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FEM features of Gh, uniform mesh
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xy(1 − x)(1 − y).
Euclid. norm of the difference between the calculated and the
exact gradient: p.-w. constant gradient (left), recovered gradient
(right).
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FEM features of Gh, distorted mesh
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Gradient of the adjoint state, uniform mesh
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The Euclid. norm of the p.-w. constant (left) and recovered
gradient of the adjoint solution.

Observations: A boundary layer exists where (a) the recovered
gradient of ∇uh (and ∇zh) is inaccurate, and (b) the amount of
sensitivity information stored in ∇zh is substantial.
Conclusion: The performance of ∇uh · ∇zh is poor even for
recovered gradients.
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Work in progress

I Exact integration in the FEM code.
I Focus not on ∇uh · ∇zh in the sensitivity formula, but on

special criterion-functionals as

Ψ(λ) =

∫
Ω0

(w,x1 − u,x1)
2 + (w,x2 − u,x2)

2 dx ,

where u solves the Poisson equation, w is a given function,
and Ω0 ⊂ Ω.
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Matlab and PDE Toolbox
Two errors discovered in R2007b and R2008a (R2007a too?,
not in R2006a):

I The format of the boundary condition matrix "b" as used in
the past and as described in the PDE Toolbox help system
or handbook causes an error message and the breakdown
of the code.
Will be fixed in R2008b. DIY fixing is easy.

I The PDE Toolbox GUI (pdetool) does not solve BVPs
with a Dirichlet homogeneous boundary condition. It
delivers a solution that is nonzero along the boundary.
Will be fixed?
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