Paralelní implementace metody BDDC a její aplikace na analýzy napjatosti v tělesech

Jakub Šístek
na práci se podílejí
P. Burda, M. Čertíková, J. Mandel, J. Novotný, B. Sousedík

České vysoké učení technické v Praze
University of Colorado Denver
Ústav termomechaniky Akademie věd České republiky

5.6.2008, PANM 14, Dolní Maxov

Brief overview of BDDC method

- Balancing Domain Decomposition based on Constraints
- 2003 C. Dohrmann, theory with J. Mandel
- nonoverlapping primary domain decomposition method
- additive Schwarz method of Neumann-Neumann type
- iterative substructuring - preconditioner in PCG
- equivalent with FETI-DP [Mandel, Dohrmann, Tezaur 2005]

The problem

Variational setting

$$
u \in U: a(u, v)=\langle f, v\rangle, \quad \forall v \in U
$$

- $a(\cdot, \cdot)$ symmetric positive definite form on U
- $\langle\cdot, \cdot\rangle$ is inner product on U

Matrix form

$$
u \in U: A u=f
$$

- A symmetric positive definite matrix on U

Linked together

$$
\langle A u, v\rangle=a(u, v) \quad \forall u, v \in U
$$

Applying PCG, a preconditioner $M \approx A^{-1}$ needed!

BDDC set-up

- division into subdomains
- selection of corners

Inflating spaces in domain decomposition

Natural to define $W=W_{1} \times \cdots \times W_{N}$ (spaces on substructures)

U
continuous functions

- space of block vectors, one block per substructure
- a (\cdot, \cdot) defined on the bigger space W, but only semidefinite
- corresponding matrix A^{W} symmetric positive semidefinite, block diagonal structure, larger dimension
- no communication on interface \rightarrow floating subdomains

Connection of U and W

Operator of projection

$$
\begin{aligned}
E: & W \rightarrow U, \quad \operatorname{Range}(E)=U \\
E^{T}: & U^{\prime} \rightarrow W^{\prime}
\end{aligned}
$$

Example: averaging across interfaces (arithmetic, weighted)

The first intermediate space in BDDC

- enough corners to fix floating subdomains - rigid body modes captured
- $a(\cdot, \cdot)$ symmetric positive definite form on \widetilde{W}^{c}
- corresponding matrix \widetilde{A}^{c} symmetric positive definite, almost block diagonal structure, larger dimension
- minimal communication on interface

The BDDC preconditioner with corners

Define $M_{B D D C}: r \in U^{\prime} \longrightarrow u \in U$
variational form
$M_{B D D C}: r \longmapsto u=E w, \quad w \in \widetilde{W}^{c}: a(w, z)=\langle r, E z\rangle, \forall z \in \widetilde{W}^{c}$
matrix form

$$
\begin{array}{r}
\widetilde{A}^{c} w=E^{T} r \\
M_{B D D C} r=E w
\end{array}
$$

equivalently

$$
M_{B D D C}=E\left(\tilde{A}^{c}\right)^{-1} E^{T}
$$

The second intermediate space in BDDC

Only corners do not suffice for optimal preconditioning
\Rightarrow additional constraints on functions from \widetilde{W}^{c} necessary
[Farhat, et al. 2000], [Klawonn, et al. 2002] for FETI-DP

Examples: equivalent averages on subsets of interface (edges, faces) across interface, additional pointwise continuity constraints

Enforcing additional constraints

introduce matrix G with constraints

- each row of G corresponds to a continuity constraint between two subdomains
- introduces new coupling between subdomains

Example: for arithmetic averages on an edge between subdomains i and j, a row of G is

$$
g_{k}=[0 \ldots 0 \underbrace{1111}_{\text {edge dof on } \Omega_{i}} 0 \ldots 0 \underbrace{-1-1-1-1}_{\text {edge dof on } \Omega_{j}} 0 \ldots 0]
$$

define intermediate space as

$$
\widetilde{W}^{\text {avg }}=\left\{w \in \widetilde{W}^{c}: \quad G w=0\right\}
$$

The BDDC preconditioner with averages

Define $M_{B D D C}: r \in U^{\prime} \longrightarrow u \in U$
variational form
$M_{B D D C}: r \longmapsto u=E w, \quad w \in \widetilde{W}^{\text {avg }}: a(w, z)=\langle r, E z\rangle, \forall z \in \widetilde{W}^{\text {avg }}$ matrix form

$$
\begin{aligned}
\widetilde{A}^{c} w+G^{T} \lambda & =E^{T} r \\
G w & =0 \\
M_{B D D C} r & =E w
\end{aligned}
$$

Using Lagrange multiplier

Compute $M_{B D D C}=E w$, where w is the solution to the system

$$
\begin{aligned}
\tilde{A}^{c} w+G^{T} \lambda & =E^{T} r \\
G w & =0
\end{aligned}
$$

Substituting $w=\left(\widetilde{A}^{c}\right)^{-1}\left(E^{T} r-G^{T} \lambda\right)$ from the first equation to the second one, solved as
1.

$$
G\left(\tilde{A}^{c}\right)^{-1} G^{T} \lambda=G\left(\tilde{A}^{c}\right)^{-1} E^{T} r
$$

2.

$$
\widetilde{A}^{c} w=E^{T} r-G^{T} \lambda
$$

Drawback: Dense global problem for Lagrange multiplier λ.

Projected BDDC

Project the system onto null(G) by projection operator

$$
P=I-G^{T}\left(G G^{T}\right)^{-1} G
$$

construct $\widetilde{A}^{\text {avg }}$ explicitely as

$$
\widetilde{A}^{\text {avg }}=P \widetilde{A}^{c} P+t(I-P)
$$

with $t>0$ scaling constant.
Compute $M_{B D D C}=E w$, where w is the solution to the system

$$
\widetilde{A}^{\text {avg }} w=P E^{T} r
$$

Drawback: Off-diagonal blocks in $\widetilde{A}^{\text {avg }}$.

Change of variables

Change of variables on each subdomain, such that averages appear as single node constraints.

$$
\bar{w}=T w, \quad w=B \bar{w}, \quad B=T^{-1}
$$

Matrix T invertible, contains weights of averages.
Compute $M_{B D D C}=E B \bar{w}$, where \bar{w} is the solution to

$$
\begin{array}{rlrc}
B^{T} \widetilde{A}^{c} B \bar{w} & +B^{T} G^{T} \lambda & =B^{T} E^{T} r \\
G B \bar{w} & & 0
\end{array}
$$

Transformed averages may be handled as corners and further assembled [Li, Widlund 2006].
Drawback: The distinction between \widetilde{W}^{c} and $\widetilde{W}^{\text {avg }}$ lost.

Projected change of variables

Combination of projected BDDC and change of variables.
Define matrix $\bar{G}=G B$ - reduces to one 1 and one -1 in each row.
Projection onto null(\bar{G})

$$
\bar{P}=I-\bar{G}^{T}\left(\overline{G G}^{T}\right)^{-1} \bar{G}
$$

Construct matrix

$$
\widetilde{A}^{\text {avg }}=\bar{P} B^{T} \widetilde{A}^{c} B \bar{P}+t(I-\bar{P})
$$

BDDC preconditioner as

$$
\begin{gathered}
\widetilde{A}^{a v g} \bar{w}=\bar{P} B^{T} E^{T} r \\
M_{B D D C} r=E B \bar{w}
\end{gathered}
$$

Parallel implementation

- built on multifrontal solver MUMPS
- based on \widetilde{W}^{c}
- Fortran 90 programming language, MPI library
- succesfully ported to
- SGI Altix 4700, CTU, Prague, CR 72 processors Intel Itanium 2, OS Linux
- IBM Blue Gene/L, NCAR+UCB+UCD, Boulder, CO 2048 processors PowerPC-440 / 700 MHz , OS AIX

MUMPS

- MUltifrontal Massively Parallel sparse direct Solver
- Patrick Amestoy, lain Duff, Abdou Guermouche, Jacko Koster, Jean-Yves L'Excellent, and Stephane Pralet
- http://graal.ens-lyon.fr/MUMPS/
- open source package in Fortran 90
- built on BLAS, BLACS, ScaLAPACK, METIS, MPI
- SPD, general symmetric and unsymmetric matrices
- multifrontal method (I. S. Duff, J. K. Reid, 1983)

Cube

- 64 subs, $32^{3}=32,769$ elements, $H / h=8,107,811$ dof
- 8 subs, $64^{3}=262,144$ elements, $H / h=32,823,875$ dof

Comparison of enforcing averages

- 64 sub, $H / h=8$, SGI Altix, 64 processors
- averages on all edges and faces - number of rows in G is 1,404
- 23 PCG iterations, condition number ~ 11.7

approach	LM	PB	PCV
matrix transformation	-	-	6.5
projection	-	13.6	5.9
analysis (sec)	2.9	42.2	12.2
factorization (sec)	0.2	41.3	0.6
dual factorization (sec)	$1,698.2$	-	-
PCG iter (sec)	316.6	8.4	7.1
total (sec)	$2,034.9$	106.3	33.2

- LM - Lagrange multiplier
- PB - projected BDDC
- PCV - projected change of variables

Variable $\widetilde{W}^{\text {avg }}$ on cube

64 sub, $H / h=8$, IBM Blue Gene/L, 64 processors, Edges, Faces

coarse problem	W^{c}	$W^{c}+E$	$W^{c}+F$	$W^{c}+E+F$	MUMPS
PCG iterations	103	49	41	24	-
cond. number est.	292.8	76.4	60.5	11.7	-
analysis (sec)	7.5	9.7	26.5	30.9	9.8
factorization (sec)	1.1	1.7	3.2	5.0	25.6
PCG iter (sec)	50.0	23.9	20.7	12.2	-
total (sec)	62.6	47.4	69.8	75.6	39.4

8 sub, $H / h=32$, SGI Altix, 8 processors

coarse problem	W^{c}	$W^{c}+E$	$W^{c}+F$	$W^{c}+E+F$	MUMPS
PCG iterations	131	75	n/a	n / a	-
cond. number est.	5941.0	903.1	n/a	n / a	-
analysis (sec)	25.6	23.5	n / a	n / a	27.1
factorization (sec)	1097.4	1426.4	n / a	n / a	12998.0
PCG iter (sec)	743.4	356.2	n/a	n / a	-
total (sec)	1885.1	1890.3	n / a	n / a	13060.6

Conclusion

Formulation of BDDC

- distinguish between \widetilde{W}^{c} and $\widetilde{W}^{\text {avg }}$
- matrix G of global constraints
- define $\widetilde{W}^{\text {avg }}$ using this matrix
- generalized change of variables

Implementation

- various approaches to applying constraints tested
- implementation based on multifrontal solver is simple
- promising results
- faces might be too expensive for certain type of problems
- more sophisticated (adaptive) way for selection of constraints - ongoing research
- advance in MUMPS package desired

