Paralelní implementace metody BDDC a její aplikace na analýzy napjatosti v tělesech

Jakub Šístek

na práci se podílejí

P. Burda, M. Čertíková, J. Mandel, J. Novotný, B. Sousedík

České vysoké učení technické v Praze University of Colorado Denver Ústav termomechaniky Akademie věd České republiky

5.6.2008, PANM 14, Dolní Maxov

Brief overview of BDDC method

- Balancing Domain Decomposition based on Constraints
- > 2003 C. Dohrmann, theory with J. Mandel
- nonoverlapping primary domain decomposition method
- additive Schwarz method of Neumann-Neumann type
- iterative substructuring preconditioner in PCG
- equivalent with FETI-DP [Mandel, Dohrmann, Tezaur 2005]

The problem

Variational setting

$$u \in U : a(u, v) = \langle f, v \rangle, \quad \forall v \in U$$

a(·, ·) symmetric positive definite form on U
⟨·, ·⟩ is inner product on U

Matrix form

$$u \in U : Au = f$$

A symmetric positive definite matrix on U

Linked together

$$\langle Au, v \rangle = a(u, v) \quad \forall u, v \in U$$

・ロト・日本・モート モー うへぐ

Applying PCG, a preconditioner $M \approx A^{-1}$ needed!

BDDC set-up

- division into subdomains
- selection of corners

Inflating spaces in domain decomposition

Natural to define $W = W_1 \times \cdots \times W_N$ (spaces on substructures)

continuous functions discontinuous along interface

- space of block vectors, one block per substructure
- ▶ $a(\cdot, \cdot)$ defined on the bigger space W, but only semidefinite
- corresponding matrix A^W symmetric positive semidefinite, block diagonal structure, larger dimension
- ▶ no communication on interface → floating subdomains

Connection of U and W

Operator of projection

$$\begin{array}{ll} E: & W \to U, \quad \textit{Range}(E) = U \\ E^T: & U' \to W' \end{array}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example: averaging across interfaces (arithmetic, weighted)

The first intermediate space in BDDC

- enough corners to fix floating subdomains rigid body modes captured
- $a(\cdot, \cdot)$ symmetric positive definite form on \widetilde{W}^c
- corresponding matrix A^c symmetric positive definite, almost block diagonal structure, larger dimension
- minimal communication on interface

The BDDC preconditioner with corners

Define
$$M_{BDDC}$$
 : $r \in U' \longrightarrow u \in U$

variational form

$$M_{BDDC}: r \longmapsto u = Ew, \quad w \in \widetilde{W}^{c}: a(w, z) = \langle r, Ez \rangle, \forall z \in \widetilde{W}^{c}$$

matrix form

$$\widetilde{A}^{c}w = E^{T}r$$
$$M_{BDDC}r = Ew$$

equivalently

$$M_{BDDC} = E(\widetilde{A}^c)^{-1}E^T$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The second intermediate space in BDDC

Only corners do not suffice for optimal preconditioning \Rightarrow additional constraints on functions from \widetilde{W}^c necessary [Farhat, et al. 2000], [Klawonn, et al. 2002] for FETI-DP

Examples: equivalent averages on subsets of interface (*edges*, *faces*) across interface, additional pointwise continuity constraints

Enforcing additional constraints

introduce matrix G with constraints

- each row of G corresponds to a continuity constraint between two subdomains
- introduces new coupling between subdomains

Example: for arithmetic averages on an edge between subdomains i and j, a row of G is

$$g_k = \begin{bmatrix} 0 \dots 0 & \underbrace{1 \ 1 \ 1 \ 1}_{\text{edge dof on } \Omega_i} 0 \dots 0 \underbrace{-1 - 1 - 1 - 1}_{\text{edge dof on } \Omega_j} 0 \dots 0 \end{bmatrix}$$

define intermediate space as

$$\widetilde{W}^{avg} = \left\{ w \in \widetilde{W}^c : \quad Gw = 0 \right\}$$

The BDDC preconditioner with averages

Define M_{BDDC} : $r \in U' \longrightarrow u \in U$

variational form

 $M_{BDDC} : r \longmapsto u = Ew, \quad w \in \widetilde{W}^{avg} : a(w, z) = \langle r, Ez \rangle, \forall z \in \widetilde{W}^{avg}$ matrix form $\widetilde{A}^{c}w + G^{T}\lambda = E^{T}r$ Gw = 0 $M_{BDDC}r = Ew$

Using Lagrange multiplier

Compute $M_{BDDC}r = Ew$, where w is the solution to the system

$$\widetilde{A}^c w + G^T \lambda = E^T r G w = 0$$

Substituting $w = (\widetilde{A}^c)^{-1} (E^T r - G^T \lambda)$ from the first equation to

the second one, solved as

$$G(\widetilde{A}^{c})^{-1}G^{T}\lambda = G(\widetilde{A}^{c})^{-1}E^{T}r$$

2.

1.

$$\widetilde{A}^{c}w = E^{T}r - G^{T}\lambda$$

Drawback: Dense global problem for Lagrange multiplier λ .

Projected BDDC

Project the system onto null(G) by projection operator

$$P = I - G^T (GG^T)^{-1} G$$

construct \widetilde{A}^{avg} explicitely as

$$\widetilde{A}^{avg} = P\widetilde{A}^{c}P + t(I-P)$$

with t > 0 scaling constant.

Compute $M_{BDDC}r = Ew$, where w is the solution to the system

$$\widetilde{A}^{avg}w = PE^Tr$$

Drawback: Off-diagonal blocks in \tilde{A}^{avg} .

Change of variables

Change of variables on each subdomain, such that averages appear as single node constraints.

$$\overline{w} = Tw, \quad w = B\overline{w}, \quad B = T^{-1}$$

Matrix T invertible, contains weights of averages.

Compute $M_{BDDC}r = EB\overline{w}$, where \overline{w} is the solution to

$$B^{T}\widetilde{A}^{c}B\overline{w} + B^{T}G^{T}\lambda = B^{T}E^{T}r$$
$$GB\overline{w} = 0$$

Transformed averages may be handled as corners and further assembled [Li, Widlund 2006]. **Drawback:** The distinction between \widetilde{W}^c and \widetilde{W}^{avg} lost.

Projected change of variables

Combination of projected BDDC and change of variables. Define matrix $\overline{G} = GB$ – reduces to one 1 and one -1 in each row. Projection onto $null(\overline{G})$

$$\overline{P} = I - \overline{G}^{T} (\overline{G}\overline{G}^{T})^{-1} \overline{G}$$

Construct matrix

$$\widetilde{A}^{avg} = \overline{P}B^{T}\widetilde{A}^{c}B\overline{P} + t(I - \overline{P})$$

BDDC preconditioner as

$$\widetilde{A}^{avg}\overline{w}=\overline{P}B^{T}E^{T}r$$

$$M_{BDDC}r = EB\overline{w}$$

Parallel implementation

- built on multifrontal solver MUMPS
- based on W^c
- Fortran 90 programming language, MPI library
- succesfully ported to
 - SGI Altix 4700, CTU, Prague, CR
 72 processors Intel Itanium 2, OS Linux
 - IBM Blue Gene/L, NCAR+UCB+UCD, Boulder, CO 2048 processors PowerPC-440 / 700 MHz, OS AIX

MUMPS

- MUltifrontal Massively Parallel sparse direct Solver
- Patrick Amestoy, Iain Duff, Abdou Guermouche, Jacko Koster, Jean-Yves L'Excellent, and Stephane Pralet
- http://graal.ens-lyon.fr/MUMPS/
- open source package in Fortran 90
- built on BLAS, BLACS, ScaLAPACK, METIS, MPI
- SPD, general symmetric and unsymmetric matrices
- multifrontal method (I. S. Duff, J. K. Reid, 1983)

Cube

- ▶ 64 subs, $32^3 = 32,769$ elements, H/h = 8, 107,811 dof
- ▶ 8 subs, $64^3 = 262, 144$ elements, H/h = 32, 823, 875 dof

・ロト ・ 戸 ・ ・ ヨ ・ ・

Comparison of enforcing averages

- ▶ 64 sub, H/h = 8, SGI Altix, 64 processors
- averages on all edges and faces number of rows in G is 1,404
- > 23 PCG iterations, condition number ${\sim}11.7$

approach	LM	PB	PCV
matrix transformation	-	-	6.5
projection	-	13.6	5.9
analysis (sec)	2.9	42.2	12.2
factorization (sec)	0.2	41.3	0.6
dual factorization (sec)	1,698.2	-	-
PCG iter (sec)	316.6	8.4	7.1
total (sec)	2,034.9	106.3	33.2

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- LM Lagrange multiplier
- PB projected BDDC
- PCV projected change of variables

Variable \widetilde{W}^{avg} on cube

64 sub, H/h = 8, IBM Blue Gene/L, 64 processors, Edges, Faces

coarse problem	Ŵ ^с	$\widetilde{W}^{c}+E$	$\widetilde{W}^{c}+F$	$\widetilde{W}^{c}+E+F$	MUMPS
PCG iterations	103	49	41	24	-
cond. number est.	292.8	76.4	60.5	11.7	-
analysis (sec)	7.5	9.7	26.5	30.9	9.8
factorization (sec)	1.1	1.7	3.2	5.0	25.6
PCG iter (sec)	50.0	23.9	20.7	12.2	-
total (sec)	62.6	47.4	69.8	75.6	39.4

8 sub, H/h = 32, SGI Altix, 8 processors

coarse problem	Ŵc	$\widetilde{W}^{c}+E$	$\widetilde{W}^{c}+F$	$\widetilde{W}^{c}+E+F$	MUMPS
PCG iterations	131	75	n/a	n/a	-
cond. number est.	5941.0	903.1	n/a	n/a	-
analysis (sec)	25.6	23.5	n/a	n/a	27.1
factorization (sec)	1097.4	1426.4	n/a	n/a	12998.0
PCG iter (sec)	743.4	356.2	n/a	n/a	-
total (sec)	1885.1	1890.3	n/a	n/a	13060.6

Conclusion

Formulation of BDDC

- distinguish between \widetilde{W}^c and \widetilde{W}^{avg}
- matrix G of global constraints
- define \widetilde{W}^{avg} using this matrix
- generalized change of variables

Implementation

- various approaches to applying constraints tested
- implementation based on multifrontal solver is simple
- promising results
- faces might be too expensive for certain type of problems
- more sophisticated (adaptive) way for selection of constraints
 ongoing research
- advance in MUMPS package desired