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Brief overview of BDDC method

I Balancing Domain Decomposition based on Constraints

I 2003 C. Dohrmann, theory with J. Mandel

I nonoverlapping primary domain decomposition method

I additive Schwarz method of Neumann-Neumann type

I iterative substructuring – preconditioner in PCG

I equivalent with FETI-DP [Mandel, Dohrmann, Tezaur 2005]



The problem

Variational setting

u ∈ U : a(u, v) = 〈f , v〉 , ∀v ∈ U

I a (·, ·) symmetric positive definite form on U

I 〈·, ·〉 is inner product on U

Matrix form

u ∈ U : Au = f

I A symmetric positive definite matrix on U

Linked together

〈Au, v〉 = a (u, v) ∀u, v ∈ U

Applying PCG, a preconditioner M ≈ A−1 needed!



BDDC set-up

I division into subdomains

I selection of corners
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Inflating spaces in domain decomposition

Natural to define W = W1 × · · · ×WN (spaces on substructures)

U ⊂ W
continuous functions discontinuous along interface

I space of block vectors, one block per substructure

I a (·, ·) defined on the bigger space W , but only semidefinite

I corresponding matrix AW symmetric positive semidefinite,
block diagonal structure, larger dimension

I no communication on interface → floating subdomains



Connection of U and W

Operator of projection

E : W → U, Range(E ) = U

ET : U ′ → W ′

Example: averaging across interfaces (arithmetic, weighted)



The first intermediate space in BDDC

U ⊂ W̃ c ⊂ W
continuous continuous at corners no continuity

I enough corners to fix floating subdomains – rigid body modes
captured

I a (·, ·) symmetric positive definite form on W̃ c

I corresponding matrix Ãc symmetric positive definite, almost
block diagonal structure, larger dimension

I minimal communication on interface



The BDDC preconditioner with corners

Define MBDDC : r ∈ U ′ −→ u ∈ U

variational form

MBDDC : r 7−→ u = Ew , w ∈ W̃ c : a (w , z) = 〈r ,Ez〉 ,∀z ∈ W̃ c

matrix form

Ãcw = ET r

MBDDC r = Ew

equivalently
MBDDC = E (Ãc)−1ET



The second intermediate space in BDDC

Only corners do not suffice for optimal preconditioning
⇒ additional constraints on functions from W̃ c necessary
[Farhat, et al. 2000], [Klawonn, et al. 2002] for FETI-DP

U ⊂ W̃ avg ⊂ W̃ c

continuous add constraints only corners
Examples: equivalent averages on subsets of interface (edges,
faces) across interface, additional pointwise continuity constraints



Enforcing additional constraints

introduce matrix G with constraints

I each row of G corresponds to a continuity constraint between
two subdomains

I introduces new coupling between subdomains

Example: for arithmetic averages on an edge between subdomains
i and j , a row of G is

gk = [0 . . . 0 1 1 1 1︸ ︷︷ ︸
edge dof on Ωi

0 . . . 0−1− 1− 1− 1︸ ︷︷ ︸
edge dof on Ωj

0 . . . 0]

define intermediate space as

W̃ avg =
{

w ∈ W̃ c : Gw = 0
}



The BDDC preconditioner with averages

Define MBDDC : r ∈ U ′ −→ u ∈ U

variational form

MBDDC : r 7−→ u = Ew , w ∈ W̃ avg : a (w , z) = 〈r ,Ez〉 ,∀z ∈ W̃ avg

matrix form
Ãcw + GTλ = ET r
Gw = 0

MBDDC r = Ew



Using Lagrange multiplier

Compute MBDDC r = Ew , where w is the solution to the system

Ãcw + GTλ = ET r
Gw = 0

.

Substituting w = (Ãc)−1(ET r − GTλ) from the first equation to
the second one, solved as

1.
G (Ãc)−1GTλ = G (Ãc)−1ET r

2.
Ãcw = ET r − GTλ

Drawback: Dense global problem for Lagrange multiplier λ.



Projected BDDC

Project the system onto null(G ) by projection operator

P = I − GT (GGT )−1G

construct Ãavg explicitely as

Ãavg = PÃcP + t(I − P)

with t > 0 scaling constant.

Compute MBDDC r = Ew , where w is the solution to the system

Ãavgw = PET r

Drawback: Off-diagonal blocks in Ãavg .



Change of variables

Change of variables on each subdomain, such that averages appear
as single node constraints.

w = Tw , w = Bw , B = T−1

Matrix T invertible, contains weights of averages.

Compute MBDDC r = EBw , where w is the solution to

BT ÃcBw + BTGTλ = BTET r
GBw = 0

.

Transformed averages may be handled as corners and further
assembled [Li, Widlund 2006].

Drawback: The distinction between W̃ c and W̃ avg lost.



Projected change of variables

Combination of projected BDDC and change of variables.
Define matrix G = GB – reduces to one 1 and one −1 in each row.
Projection onto null(G )

P = I − G
T

(GG
T

)−1G

Construct matrix

Ãavg = PBT ÃcBP + t(I − P)

BDDC preconditioner as

Ãavgw = PBTET r

MBDDC r = EBw



Parallel implementation

I built on multifrontal solver MUMPS

I based on W̃ c

I Fortran 90 programming language, MPI library
I succesfully ported to

I SGI Altix 4700, CTU, Prague, CR
72 processors Intel Itanium 2, OS Linux

I IBM Blue Gene/L, NCAR+UCB+UCD, Boulder, CO
2048 processors PowerPC-440 / 700 MHz, OS AIX



MUMPS

I MUltifrontal Massively Parallel sparse direct Solver

I Patrick Amestoy, Iain Duff, Abdou Guermouche, Jacko
Koster, Jean-Yves L’Excellent, and Stephane Pralet

I http://graal.ens-lyon.fr/MUMPS/

I open source package in Fortran 90

I built on BLAS, BLACS, ScaLAPACK, METIS, MPI

I SPD, general symmetric and unsymmetric matrices

I multifrontal method (I. S. Duff, J. K. Reid, 1983)

P1 P2 P3 P4 P5P0



Cube

I 64 subs, 323 = 32, 769 elements, H/h = 8, 107, 811 dof

I 8 subs, 643 = 262, 144 elements, H/h = 32, 823, 875 dof



Comparison of enforcing averages

I 64 sub, H/h = 8, SGI Altix, 64 processors

I averages on all edges and faces – number of rows in G is 1,404

I 23 PCG iterations, condition number ∼11.7

approach LM PB PCV

matrix transformation - - 6.5
projection - 13.6 5.9

analysis (sec) 2.9 42.2 12.2
factorization (sec) 0.2 41.3 0.6

dual factorization (sec) 1,698.2 - -
PCG iter (sec) 316.6 8.4 7.1

total (sec) 2,034.9 106.3 33.2

I LM – Lagrange multiplier

I PB – projected BDDC

I PCV – projected change of variables



Variable W̃ avg on cube

64 sub, H/h = 8, IBM Blue Gene/L, 64 processors, Edges, Faces

coarse problem W̃ c W̃ c+E W̃ c+F W̃ c+E+F MUMPS

PCG iterations 103 49 41 24 -
cond. number est. 292.8 76.4 60.5 11.7 -

analysis (sec) 7.5 9.7 26.5 30.9 9.8
factorization (sec) 1.1 1.7 3.2 5.0 25.6

PCG iter (sec) 50.0 23.9 20.7 12.2 -

total (sec) 62.6 47.4 69.8 75.6 39.4

8 sub, H/h = 32, SGI Altix, 8 processors

coarse problem W̃ c W̃ c+E W̃ c+F W̃ c+E+F MUMPS

PCG iterations 131 75 n/a n/a -
cond. number est. 5941.0 903.1 n/a n/a -

analysis (sec) 25.6 23.5 n/a n/a 27.1
factorization (sec) 1097.4 1426.4 n/a n/a 12998.0

PCG iter (sec) 743.4 356.2 n/a n/a -

total (sec) 1885.1 1890.3 n/a n/a 13060.6



Conclusion

Formulation of BDDC

I distinguish between W̃ c and W̃ avg

I matrix G of global constraints

I define W̃ avg using this matrix

I generalized change of variables

Implementation

I various approaches to applying constraints tested

I implementation based on multifrontal solver is simple

I promising results

I faces might be too expensive for certain type of problems

I more sophisticated (adaptive) way for selection of constraints
- ongoing research

I advance in MUMPS package desired
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