Computational homogenization for multiscale modeling of heterogeneous materials

Eduard Rohan

Robert Cimrman

Vladimír Lukeš

Department of Mechanics University of West Bohemia, Plzeň, Czech Republic

PANM 2008, Dolní Maxov, 4th June 2008

ZÁPADOČESKÁ UNIVERZITA V PLZNI Homogenization of problems with scale-dependent parameters

scale dependent material parameters (s.d.m.p.)

existence of underlying structures (micro-level)

upscaling by " $\varepsilon \rightarrow 0$ " meso \rightarrow macro				
scale: micro		meso	macro	
description: s.d.m.p.		heterogeneous description,	homogenized	
		of <i>micro</i> model	model	

- ► fluid saturated *double-porous* media (f.s.dp.m.) s.d. permeability ⇒ solids with microflow
- phononic crystals s.d. elasticity
 materials with negative mass (gaps in wave propagation)

layered media - scale dependent thickness

- prefusion in structured transversally periodic f.s.dp.m.
- acoustic transmission on perforated interfaces

Coefficient scaling – interactions & fluctuations

local fluctuations

macro-micro interaction

$$|\text{grad}| \leq \frac{C}{\epsilon}$$

... strong heterogeneity

Cortical bone — double porous medium?

3 scales — distinguishable porosities

- Macro-scale: a piece of compact bone (10 mm)
- Meso-scale level 1 Haversian and Volkmann channels (100 μ m)
- Micro-scale level 2 canaliculi, lacunae in "solid matrix" (1 μ m)

3 scales - Dual porosity - a model of compact bone

Meso-scale \rightarrow *micro*-scale

 $\varepsilon\delta\approx\varepsilon^2$

Biot model of porous fluid saturated solid

$$\begin{aligned} & -\partial_j D_{ijkl} e_{kl}(\mathbf{u}^s) + \partial_j (\alpha_{ij} p) = f_i & \text{elasticity} \\ & \alpha_{ij} e_{ij} (\frac{\mathrm{d}}{\mathrm{d} t} \mathbf{u}^s) + \mathrm{div} \mathbf{w} + \frac{1}{\mu} \frac{\mathrm{d}}{\mathrm{d} t} p = 0 & \text{Biot coefficients} \\ & \mathbf{K} \nabla p + \mathbf{w} = 0 , \end{aligned}$$

$$D_{ijkl} \\ (K_{ij}) = \mathbf{K} \\ \alpha_{ij} \\ \frac{1}{\mu} = \frac{1}{N} + \frac{\phi_0}{k_f}$$

Boundary value problem – two filed formulation Find \mathbf{u}^s and p such that

$$\begin{aligned} &-\partial_j D_{ijkl} e_{kl}(\mathbf{u}^s) + \partial_j (\alpha_{ij} p) = f_i & \text{ in } \Omega, \\ &\alpha_{ij} e_{ij} (\frac{\mathrm{d}}{\mathrm{d} t} \mathbf{u}^s) - \partial_i K_{ij} \partial_j p + \frac{1}{\mu} \frac{\mathrm{d}}{\mathrm{d} t} p = 0 & \text{ in } \Omega, \end{aligned}$$

and

$$\begin{split} \mathbf{u}^{s}(t,\cdot) &= \bar{\mathbf{u}}^{s}(t,\cdot) \quad \text{ on } \partial\Omega, \text{ for } t \in]0, T[,\\ \mathbf{w}(t,\cdot) &= 0 \quad \text{ on } \partial\Omega, \text{ for } t \in]0, T[,\\ \mathbf{u}^{s}(0,\cdot) &= 0 \quad \text{ in } \Omega,\\ p(0,\cdot) &= 0 \quad \text{ in } \Omega. \end{split}$$

Geometry - domain decomposition

$$\Omega = \Omega_m \cup \Omega_c \cup \Gamma_{mc}, \quad \text{with} \quad \Omega_m \cap \Omega_c = \emptyset.$$

Representative periodic cell $Y = \prod_{i=1}^{3}]0, \bar{y}_i [$ $Y_m = Y \setminus \overline{Y_c},$ $\partial_m Y_c = \partial_c Y_m = \overline{Y_c} \cap \overline{Y_m},$ $\partial_c Y_c = \overline{Y_c} \cap \partial Y,$ $\partial_m Y_m = \overline{Y_m} \cap \partial Y,$

Periodic unfolding — macro-micro decomposition

$$x = \varepsilon \left[\frac{x}{\varepsilon} \right]_Y + \varepsilon \left\{ \frac{x}{\varepsilon} \right\}_Y \qquad y = \left\{ \frac{x}{\varepsilon} \right\}_Y \in Y$$

Geometry – domain decomposition

$$\Omega = \Omega_m \cup \Omega_c \cup \Gamma_{mc}, \quad \text{with} \quad \Omega_m \cap \Omega_c =$$

Ø.

Representative periodic cell

$$Y = \prod_{i=1}^{3}]0, \bar{y}_i [$$

 $Y_m = Y \setminus \overline{Y_c},$
 $\partial_m Y_c = \partial_c Y_m = \overline{Y_c} \cap \overline{Y_m},$
 $\partial_c Y_c = \overline{Y_c} \cap \partial Y,$
 $\partial_m Y_m = \overline{Y_m} \cap \partial Y,$

Periodic unfolding — macro-micro decomposition

$$x = \varepsilon \left[\frac{x}{\varepsilon} \right]_{Y} + \varepsilon \left\{ \frac{x}{\varepsilon} \right\}_{Y} \qquad y = \left\{ \frac{x}{\varepsilon} \right\}_{Y} \in Y$$

Biot model with oscillating coefficients - dual porosity

Material coefficients

$$\begin{split} D^{\varepsilon}_{ijkl}(x) &= D^{c}_{ijkl}(\{\frac{x}{\varepsilon}\})\chi^{\varepsilon}_{c}(x) + D^{m}_{ijkl}(\{\frac{x}{\varepsilon}\})\chi^{\varepsilon}_{m}(x) ,\\ \alpha^{\varepsilon}_{ij}(x) &= \alpha^{c}_{ij}(\{\frac{x}{\varepsilon}\})\chi^{\varepsilon}_{c}(x) + \alpha^{m}_{ij}(\{\frac{x}{\varepsilon}\})\chi^{\varepsilon}_{m}(x) ,\\ K^{\varepsilon}_{ij}(x) &= K^{c}_{ij}(\{\frac{x}{\varepsilon}\})\chi^{\varepsilon}_{c}(x) + \varepsilon^{2}K^{m}_{ij}(\{\frac{x}{\varepsilon}\})\chi^{\varepsilon}_{m}(x) ,\\ \mu^{\varepsilon}(x) &= \mu^{c}(\{\frac{x}{\varepsilon}\})\chi^{\varepsilon}_{c}(x) + \mu^{m}(\{\frac{x}{\varepsilon}\})\chi^{\varepsilon}_{m}(x) . \end{split}$$

Weak formulation — time-integrated pressure P

$$\begin{split} \int_{\Omega} D_{ijkl}^{\varepsilon} e_{kl}(\mathbf{u}^{\varepsilon}) e_{ij}(\mathbf{v}) &- \int_{\Omega} \frac{\mathrm{d} P^{\varepsilon}}{\mathrm{d} t} \alpha_{ij}^{\varepsilon} e_{ij}(\mathbf{v}) = \int_{\Omega} \mathbf{f} \cdot \mathbf{v} , \quad \forall \mathbf{v} \in V_0 ,\\ \int_{\Omega} q \, \alpha_{ij}^{\varepsilon} e_{ij}(\mathbf{u}^{\varepsilon}) &+ \int_{\Omega} K_{ij}^{\varepsilon} \partial_j P^{\varepsilon} \, \partial_i q + \int_{\Omega} \frac{1}{\mu^{\varepsilon}} \frac{\mathrm{d} P^{\varepsilon}}{\mathrm{d} t} q = 0 , \quad \forall q \in H^1(\Omega) ,\\ \text{where } P^{\varepsilon}(t, x) = \int_0^t p^{\varepsilon}(t, x) \, dt , \end{split}$$

Biot model with oscillating coefficients - dual porosity

Material coefficients

$$\begin{split} D^{\varepsilon}_{ijkl}(x) &= D^{c}_{ijkl}(\{\frac{x}{\varepsilon}\})\chi^{\varepsilon}_{c}(x) + D^{m}_{ijkl}(\{\frac{x}{\varepsilon}\})\chi^{\varepsilon}_{m}(x) ,\\ \alpha^{\varepsilon}_{ij}(x) &= \alpha^{c}_{ij}(\{\frac{x}{\varepsilon}\})\chi^{\varepsilon}_{c}(x) + \alpha^{m}_{ij}(\{\frac{x}{\varepsilon}\})\chi^{\varepsilon}_{m}(x) ,\\ K^{\varepsilon}_{ij}(x) &= K^{c}_{ij}(\{\frac{x}{\varepsilon}\})\chi^{\varepsilon}_{c}(x) + \varepsilon^{2}K^{m}_{ij}(\{\frac{x}{\varepsilon}\})\chi^{\varepsilon}_{m}(x) ,\\ \mu^{\varepsilon}(x) &= \mu^{c}(\{\frac{x}{\varepsilon}\})\chi^{\varepsilon}_{c}(x) + \mu^{m}(\{\frac{x}{\varepsilon}\})\chi^{\varepsilon}_{m}(x) . \end{split}$$

Weak formulation — time-integrated pressure P

$$\begin{split} \int_{\Omega} D_{ijkl}^{\varepsilon} e_{kl}(\mathbf{u}^{\varepsilon}) e_{ij}(\mathbf{v}) &- \int_{\Omega} \frac{\mathrm{d} P^{\varepsilon}}{\mathrm{d} t} \alpha_{ij}^{\varepsilon} e_{ij}(\mathbf{v}) = \int_{\Omega} \mathbf{f} \cdot \mathbf{v} , \quad \forall \mathbf{v} \in V_0 ,\\ \int_{\Omega} q \, \alpha_{ij}^{\varepsilon} e_{ij}(\mathbf{u}^{\varepsilon}) &+ \int_{\Omega} K_{ij}^{\varepsilon} \partial_j P^{\varepsilon} \, \partial_i q + \int_{\Omega} \frac{1}{\mu^{\varepsilon}} \frac{\mathrm{d} P^{\varepsilon}}{\mathrm{d} t} q = 0 , \quad \forall q \in H^1(\Omega) ,\\ \text{where } P^{\varepsilon}(t, x) = \int_0^t p^{\varepsilon}(t, x) \, dt , \end{split}$$

Periodic unfolding (*Cioranescu*, *Damlamian*, *Griso*...2002) oscillating fuction: $f^{\varepsilon}(x) \longrightarrow T_{\varepsilon}(f^{\varepsilon})(x, y)$

- 1. weak formulation (WF)
- 2. a priori estimation of unknown functions
- 3. limit functions (gradients)
- 4. definition of test functions
- 5. unfolding the integrals in WF, passing to the limit
- scale decoupling microproblems, corrector basis functions, global functions
- 7. solving the microproblems
- 8. evaluation of homogenized coefficients (HC).
- 9. solving the macroscopic problem defined in terms of HC
- interpretation for $\epsilon_0 > 0$..., given finite scale

Periodic unfolding (*Cioranescu*, *Damlamian*, *Griso*...2002) oscillating fuction: $f^{\varepsilon}(x) \longrightarrow T_{\varepsilon}(f^{\varepsilon})(x, y)$

- 1. weak formulation (WF)
- 2. a priori estimation of unknown functions
- 3. limit functions (gradients)
- 4. definition of test functions
- 5. unfolding the integrals in WF, passing to the limit
- scale decoupling microproblems, corrector basis functions, global functions
- 7. solving the microproblems
- 8. evaluation of homogenized coefficients (HC)
- 9. solving the macroscopic problem defined in terms of HC
- **10**. interpretation for $\varepsilon_0 > 0$... given finite scale

Periodic unfolding (*Cioranescu*, *Damlamian*, *Griso* ... 2002) oscillating fuction: $f^{\varepsilon}(x) \longrightarrow T_{\varepsilon}(f^{\varepsilon})(x, y)$

- 1. weak formulation (WF)
- 2. a priori estimation of unknown functions
- 3. limit functions (gradients)
- 4. definition of test functions
- 5. unfolding the integrals in WF, passing to the limit
- scale decoupling microproblems, corrector basis functions, global functions
- 7. solving the microproblems
- 8. evaluation of homogenized coefficients (HC)
- 9. solving the macroscopic problem defined in terms of HC
- **10.** interpretation for $\varepsilon_0 > 0$... given finite scale

Periodic unfolding (*Cioranescu*, *Damlamian*, *Griso*...2002) oscillating fuction: $f^{\varepsilon}(x) \longrightarrow T_{\varepsilon}(f^{\varepsilon})(x, y)$

- 1. weak formulation (WF)
- 2. a priori estimation of unknown functions
- 3. limit functions (gradients)
- 4. definition of test functions
- 5. unfolding the integrals in WF, passing to the limit
- scale decoupling microproblems, corrector basis functions, global functions
- 7. solving the microproblems
- 8. evaluation of homogenized coefficients (HC)
- 9. solving the macroscopic problem defined in terms of HC
- **10**. interpretation for $\varepsilon_0 > 0$... given finite scale

Periodic unfolding (*Cioranescu*, *Damlamian*, *Griso*...2002) oscillating fuction: $f^{\varepsilon}(x) \longrightarrow \mathcal{T}_{\varepsilon}(f^{\varepsilon})(x, y)$

- 1. weak formulation (WF)
- 2. a priori estimation of unknown functions
- 3. limit functions (gradients)
- 4. definition of test functions
- 5. unfolding the integrals in WF, passing to the limit
- scale decoupling microproblems, corrector basis functions, global functions
- 7. solving the microproblems
- 8. evaluation of homogenized coefficients (HC)
- 9. solving the macroscopic problem defined in terms of HC
- 10. interpretation for $\varepsilon_0 > 0$... given finite scale

Limit model — uncoupled scales

Phys. field	Function	Scale	Domain
displac.	$\mathbf{u}(x)$	Macro	Ω
displac.	$\mathbf{u}^1(x,y)$	micro	$\Omega imes Y$
press.	P(x)	Macro	Ω
press.	$P^1(x,y)$	micro	$\Omega imes Y_c$
press.	$\widehat{P}^0(x,y)$	micro	$\Omega \times Y_m$

Global equations:

to be satisfied for all $\mathbf{w} \in V_0 = \mathbf{H}_0^1(\Omega)$ and $q^0 \in H^1(\Omega)$

$$\int_{\Omega \times Y} D_{ijkl}[e_{kl}^{\mathsf{x}}(\mathbf{u}) + e_{kl}^{\mathsf{y}}(\mathbf{u}^{1})] e_{ij}^{\mathsf{x}}(\mathbf{v}^{0}) - \int_{\Omega \times Y} \alpha_{ij} e_{ij}^{\mathsf{x}}(\mathbf{v}^{0}) \left(\frac{\mathrm{d}P}{\mathrm{d}t} + \chi_{m} \frac{\mathrm{d}\widehat{P}^{0}}{\mathrm{d}t}\right) = \int_{\Omega} \mathbf{f} \cdot \mathbf{v}^{0} \cdot \mathbf{v}^{0}$$

$$\begin{aligned} \int_{\Omega \times Y_c} \mathcal{K}_{ij}^c \left[\partial_j^x P + \partial_j^y P^1 \right] \partial_i^x q^0 + \int_{\Omega \times Y} \alpha_{ij} \left[e_{ij}^x (\mathbf{u}) + e_{ij}^y (\mathbf{u}^1) \right] q^0 \\ + \int_{\Omega \times Y_c} \frac{1}{\mu^c} \frac{\mathrm{d} P}{\mathrm{d} t} q^0 + \int_{\Omega \times Y_m} \frac{1}{\mu^m} \left(\frac{\mathrm{d} P}{\mathrm{d} t} + \frac{\mathrm{d} \widehat{P}^0}{\mathrm{d} t} \right) q^0 = 0 , \end{aligned}$$

Limit model — uncoupled scales

Phys. field	Function	Scale	Domain
displac.	u (<i>x</i>)	Macro	Ω
displac.	$\mathbf{u}^1(x,y)$	micro	$\Omega imes Y$
press.	P(x)	Macro	Ω
press.	$P^1(x,y)$	micro	$\Omega \times Y_c$
press.	$\widehat{P}^0(x,y)$	micro	$\Omega \times Y_m$

Global equations:

to be satisfied for all $\mathbf{w} \in V_0 = \mathbf{H}_0^1(\Omega)$ and $q^0 \in H^1(\Omega)$

$$\int_{\Omega \times Y} D_{ijkl}[e_{kl}^{x}(\mathbf{u}) + e_{kl}^{y}(\mathbf{u}^{1})] e_{ij}^{x}(\mathbf{v}^{0}) - \int_{\Omega \times Y} \alpha_{ij} e_{ij}^{x}(\mathbf{v}^{0}) \left(\frac{\mathrm{d} P}{\mathrm{d} t} + \chi_{m} \frac{\mathrm{d} \widehat{P}^{0}}{\mathrm{d} t}\right) = \int_{\Omega} \mathbf{f} \cdot \mathbf{v}^{0} ,$$

$$\begin{aligned} \oint_{\Omega \times Y_c} K_{ij}^c \left[\partial_j^x P + \partial_j^y P^1 \right] \partial_i^x q^0 + \oint_{\Omega \times Y} \alpha_{ij} \left[e_{ij}^x (\mathbf{u}) + e_{ij}^y (\mathbf{u}^1) \right] q^0 \\ + \oint_{\Omega \times Y_c} \frac{1}{\mu^c} \frac{\mathrm{d} P}{\mathrm{d} t} q^0 + \oint_{\Omega \times Y_m} \frac{1}{\mu^m} \left(\frac{\mathrm{d} P}{\mathrm{d} t} + \frac{\mathrm{d} \widehat{P}^0}{\mathrm{d} t} \right) q^0 = 0 \;, \end{aligned}$$

Limit model — uncoupled scales

Phys. field	Function	Scale	Domain	space
displac.	$\mathbf{u}(x)$	Macro	Ω	$L^{2}(0, T; H^{1}_{0}(\Omega))$
displac.	$\mathbf{u}^1(x,y)$	micro	$\Omega imes Y$	$L^{2}(0, T; L^{2}(\Omega; H^{1}_{\#}(Y)))$
press.	P(x)	Macro	Ω	$L^{\infty}(0, T; L^{2}(\Omega))$
press.	$P^1(x,y)$	micro	$\Omega imes Y_c$	$L^{\infty}(0, T; L^{2}(\Omega; H^{1}_{\#}(Y_{c})))$
press.	$\widehat{P}^0(x,y)$	micro	$\Omega \times Y_m$	$L^{\infty}(0, T; L^2(\Omega; H^1(Y_m)))$

Local equation — diffusion in the channels

$$\int_{Y_c} K_{ij}^c \, \partial_j^y P^1 \, \partial_i^y \psi = -\partial_j^x P(x) \int_{Y_c} K_{ij}^c \, \partial_i^y \psi \qquad \forall \psi \in H^1_{\#}(Y_c)$$

Local equation — diffusion-deformation in the marix

$$\begin{aligned} \int_{Y} D_{ijkl}[e_{kl}^{x}(\mathbf{u}) + e_{kl}^{y}(\mathbf{u}^{1})] e_{ij}^{y}(\mathbf{w}) - \int_{Y} \alpha_{ij} e_{ij}^{y}(\mathbf{w}) \frac{\mathrm{d} P}{\mathrm{d} t} - \int_{Y_{m}} \alpha_{ij}^{m} e_{ij}^{y}(\mathbf{w}) \frac{\mathrm{d} \hat{P}^{0}}{\mathrm{d} t} = 0 ,\\ \int_{Y_{m}} \mathcal{K}_{ij}^{m} \partial_{j}^{y} \hat{P}^{0} \partial_{i}^{y} \phi + \int_{Y_{m}} \alpha_{ij}^{m} [e_{ij}^{x}(\mathbf{u}) + e_{ij}^{y}(\mathbf{u}^{1})] \phi + \int_{Y_{m}} \frac{1}{\mu^{m}} \left(\frac{\mathrm{d} P}{\mathrm{d} t} + \frac{\mathrm{d} \hat{P}^{0}}{\mathrm{d} t} \right) \phi = 0 ,\\ \text{for all } \mathbf{w} \in \mathbf{H}_{\#}^{1}(Y) \text{ and } \phi \in H_{\#0}^{1}(Y_{m}). \end{aligned}$$

Scale decoupling — Time dependent problem

Local fields $\mathbf{u}^1(t, x, y)$, $\widehat{P}^0(t, x, y)$ — convolution form Introduce split using corrector basis functions:

$$\mathbf{u}^{1}(t,x,y) = \int_{0}^{t} \omega^{rs}(t-\tau) \frac{\mathrm{d}}{\mathrm{d}\tau} e^{x}_{rs}(\mathbf{u}(\tau)) d\tau + \int_{0}^{t} \omega^{P}(t-\tau) \frac{\mathrm{d}}{\mathrm{d}\tau} P(\tau) d\tau ,$$

$$\widehat{P}^{0}(t,x,y) = \int_{0}^{t} \pi^{rs}(t-\tau,y) \frac{\mathrm{d}}{\mathrm{d}\tau} e^{x}_{rs}(\mathbf{u}(\tau)) d\tau + \int_{0}^{t} \pi^{P}(t-\tau,y) \frac{\mathrm{d}}{\mathrm{d}\tau} P(\tau) d\tau .$$

Local problems – notation

$$\begin{aligned} \mathbf{a}_{Y}\left(\mathbf{u},\,\mathbf{v}\right) = & \int_{Y} D_{ijkl}(y) \mathbf{e}_{kl}^{y}(\mathbf{u}) \, \mathbf{e}_{ij}^{y}(\mathbf{v}) \\ \mathbf{b}_{Y_{m}}\left(\varphi,\,\mathbf{v}\right) = & \int_{Y_{m}} \varphi \, \alpha_{ij}^{m}(y) \mathbf{e}_{ij}^{y}(\mathbf{v}) , \\ \mathbf{c}_{Y_{m}}\left(\varphi,\,\psi\right) = & \int_{Y_{m}} K_{ij}^{m}(y) \partial_{j}^{y} \varphi \partial_{i}^{y} \psi , \\ \mathbf{d}_{Y_{m}}\left(\varphi,\,\psi\right) = & \int_{Y_{m}} (\mu^{m})^{-1} \psi \, \varphi . \end{aligned}$$

Microscopic problems — correctors w.r.t. $e_{rs}^{\times}(\mathbf{u})$

The correctors (ω^{rs},π^{rs}) can be expressed in the form

$$\omega^{rs}(t) = [\tilde{\omega}^{rs}(t) + \bar{\omega}^{rs}] H_+(t) ,$$

$$\pi^{rs}(t) = [\tilde{\pi}^{rs}(t) + \bar{\pi}^{rs}] H_+(t) .$$

Steady problem correctors – compute ($\bar{\omega}^{rs}, \bar{\pi}^{rs}$)

$$\begin{split} & a_Y\left(\bar{\omega}^{rs},\,\boldsymbol{\mathsf{v}}\right) = a_Y\left(\boldsymbol{\mathsf{\Pi}}^{rs},\,\boldsymbol{\mathsf{v}}\right) \quad \forall \boldsymbol{\mathsf{v}} \in \boldsymbol{\mathsf{H}}^1_{\#}(Y) \;, \\ & c_{Y_m}\left(\bar{\pi}^{rs},\,q\right) = -b_{Y_m}\left(q,\,\bar{\omega}^{rs}+\boldsymbol{\mathsf{\Pi}}^{rs}\right) \quad \forall q \in H^1_{\#0}(Y_m) \;, \end{split}$$

where $\mathbf{\Pi}^{rs} = (\Pi_i^{rs})$ is defined as $\Pi_i^{rs} = y_s \delta_{ir}$.

Evolutionary problem correctors – compute $(\tilde{\omega}^{rs}, \tilde{\pi}^{rs})$

$$\begin{aligned} a_{Y}\left(\tilde{\boldsymbol{\omega}}^{rs},\,\boldsymbol{v}\right)-b_{Y_{m}}\left(\frac{\mathrm{d}}{\mathrm{d}\,t}\tilde{\pi}^{rs},\,\boldsymbol{v}\right)&=0\quad\forall\boldsymbol{v}\in\boldsymbol{\mathsf{H}}_{\#}^{1}(Y)\,,\\ b_{Y_{m}}\left(q,\,\tilde{\boldsymbol{\omega}}^{rs}\right)+c_{Y_{m}}\left(\tilde{\pi}^{rs},\,q\right)+d_{Y_{m}}\left(\frac{\mathrm{d}}{\mathrm{d}\,t}\tilde{\pi}^{rs},\,q\right)&=0\quad\forall q\in\boldsymbol{\mathsf{H}}_{\#0}^{1}(Y_{m})\,,\end{aligned}$$

where $ilde{\pi}^{rs}(0) = -ar{\pi}^{rs}.$

Microscopic problems — correctors w.r.t. P

The correctors (ω^{rs}, π^{rs}) can be expressed in the form

$$\begin{split} \boldsymbol{\omega}^{P}(t) &= \tilde{\boldsymbol{\omega}}^{P}(t) \, \boldsymbol{H}_{+}(t) + \boldsymbol{\omega}^{*P} \, \delta_{+}(t) \; , \\ \boldsymbol{\pi}^{P}(t) &= \tilde{\boldsymbol{\pi}}^{P}(t) \, \boldsymbol{H}_{+}(t) \; , \end{split}$$

Steady problem correctors – compute $(\boldsymbol{\omega}^{*,P}, \tilde{\pi}^{P}(0))$

$$egin{aligned} &a_{Y}\left(\omega^{*,P},\,\mathbf{v}
ight)-b_{Y_{m}}\left(ilde{\pi}^{P}(0_{+}),\,\mathbf{v}
ight)=b_{Y}\left(1,\,\mathbf{v}
ight)\quadorall\mathbf{v}\in\mathsf{H}^{1}_{\#}(Y)\ ,\ &b_{Y_{m}}\left(q,\,\omega^{*,P}
ight)+d_{Y_{m}}\left(ilde{\pi}^{P}(0_{+}),\,q
ight)=-d_{Y_{m}}\left(1,\,q
ight)\quadorall q\in H^{1}_{\#0}(Y_{m})\ . \end{aligned}$$

Evolutionary problem correctors – compute $(\tilde{\omega}^P, \tilde{\pi}^P)$

$$\begin{aligned} \mathsf{a}_{Y}\left(\tilde{\omega}^{P},\,\mathbf{v}\right)-\mathsf{b}_{Y_{m}}\left(\frac{\mathrm{d}}{\mathrm{d}\,t}\tilde{\pi}^{P},\,\mathbf{v}\right)&=0\quad\forall\mathbf{v}\in\mathsf{H}_{\#}^{1}(Y)\;,\\ \mathsf{b}_{Y_{m}}\left(q,\,\omega^{*,P}\right)+c_{Y_{m}}\left(\tilde{\pi}^{P},\,q\right)+\mathsf{d}_{Y_{m}}\left(\frac{\mathrm{d}}{\mathrm{d}\,t}\tilde{\pi}^{P},\,q\right)&=0\quad\forall q\in\mathsf{H}_{\#0}^{1}(Y_{m})\;.\end{aligned}$$

where $\tilde{\pi}^{P}(0)$ is given by the "steady problem".

corrector shape functions

- steady correctors:
 - ▶ left: $\bar{\omega}^{11}$, right: $\bar{p}^{11} \in [-0.673, 0] + \text{perfusion velocities}$

▶ left: $\bar{\omega}^{21}$ (scaled 0.1x), right: $\bar{p}^{21} \in [-0.542, 0] + \text{perfusion velocities}$

Homogenized coefficients

Defined in terms of the corrector basis functions

the homogenized elastic tensor

$$\mathcal{E}_{ijkl} = \mathsf{a}_Y \left(\mathbf{\Pi}^{kl} + ar{\omega}^{kl}, \, \mathbf{\Pi}^{ij} + ar{\omega}^{ij}
ight) \; ,$$

the homogenized viscosity tensor of the fading memory

$$\mathcal{H}_{ijkl}(t) = c_{Y_m}\left(rac{\mathrm{d}}{\mathrm{d}\,t}ar{\pi}^{kl},\,ar{\pi}^{ij}
ight)$$

... effects of microcirculation in the matrix

Instantaneous homogenized Biot coefficients

$$\mathcal{B}_{ij} = \int_{Y} \alpha_{ij} + b_Y \left(1, \, \bar{\boldsymbol{\omega}}^{ij} \right) \;,$$

transition ("fading memory") homogenized Biot coefficients

$$\mathcal{F}_{ij}(t) = b_{Y_m}\left(ilde{\pi}^P - ilde{\pi}^P(0), \, ilde{\omega}^{ij}
ight) + c_{Y_m}\left(ilde{\pi}^{ij}, \, ilde{\pi}^P
ight) \; .$$

homogenized reciprocal Biot modulus – instantaneous response

$$\mathcal{M} = \int_{Y} \frac{1}{\mu} + d_{Y_m} \left(\tilde{\pi}^P(\mathbf{0}_+), 1 \right) + b_Y \left(1, \, \boldsymbol{\omega}^{*, P} \right) \, ,$$

fading memory part of the homogenized reciprocal Biot modulus

$$\mathcal{G}(t) = d_{Y_m}\left(rac{\mathrm{d}}{\mathrm{d}\,t} ilde{\pi}^P,\,1
ight) + b_Y\left(1,\, ilde{\omega}^P
ight)$$

Effective permeability C_{ij} — autonomous problem correctors $\eta \in H^1_{\#}(Y_c)$ in channels $C_{kl} = \int_{Y_c} K^c_{ij} \partial^y_j (\eta^l + y_l) \partial^y_i (\eta^k + y_k) ,$ where $0 = \int_{Y_c} K^c_{ij} \partial^y_j (\eta^k + y_k) \partial^y_i \psi \quad \forall \psi \in H^1_{\#}(Y)$ homogenized reciprocal Biot modulus – instantaneous response

$$\mathcal{M} = \int_{Y} \frac{1}{\mu} + d_{Y_m} \left(\tilde{\pi}^P(\mathbf{0}_+), 1 \right) + b_Y \left(1, \, \boldsymbol{\omega}^{*, P} \right) \; ,$$

fading memory part of the homogenized reciprocal Biot modulus

$$\mathcal{G}(t) = d_{Y_m}\left(rac{\mathrm{d}}{\mathrm{d}\,t} ilde{\pi}^P,\,1
ight) + b_Y\left(1,\, ilde{\omega}^P
ight)$$

Effective permeability C_{ij} — autonomous problem correctors $\eta \in H^1_{\#}(Y_c)$ in channels $C_{kl} = \int_{Y_c} \mathcal{K}^c_{ij} \partial^y_j (\eta^l + y_l) \partial^y_i (\eta^k + y_k) ,$ where $0 = \int_{Y_c} \mathcal{K}^c_{ij} \partial^y_j (\eta^k + y_k) \partial^y_i \psi \quad \forall \psi \in H^1_{\#}(Y)$

Macroscopic model — upscaled double porous medium

For a.a. $t \in]0, T[$ find $\mathbf{u} \in V$ and $P \in Q$ (with P(0) = 0) such that

$$\int_{\Omega} \mathcal{E}_{ijkl} e_{kl}(\mathbf{u}) e_{ij}(\mathbf{v}) + \int_{\Omega} \int_{0}^{t} \mathcal{H}_{ijkl}(t-\tau) e_{kl}(\frac{\mathrm{d}}{\mathrm{d} t}\mathbf{u}(\tau)) d\tau e_{ij}(\mathbf{v}) - \int_{\Omega} (\mathcal{B}_{ij} + \mathcal{F}_{ij}(\mathbf{0}_{+})) \frac{\mathrm{d}}{\mathrm{d} t} P e_{ij}(\mathbf{v}) - \int_{\Omega} \int_{0}^{t} \mathcal{F}_{ij}(t-\tau) \frac{\mathrm{d}}{\mathrm{d} \tau} P(\tau) d\tau e_{ij}(\mathbf{v}) = \int_{\Omega} \mathbf{f} \cdot \mathbf{v} ,$$

$$\begin{split} \int_{\Omega} \mathcal{B}_{ij} e_{ij}(\mathbf{u}) \, q + \int_{\Omega} \int_{0}^{t} \mathcal{F}_{ij}(t-\tau) e_{ij}(\frac{\mathrm{d}}{\mathrm{d}\,\tau} \mathbf{u}(\tau)) \, d\tau \, q + \int_{\Omega} \mathcal{C}_{ij} \partial_{j} P \partial_{i} q \\ &+ \int_{\Omega} \mathcal{M} \frac{\mathrm{d}}{\mathrm{d}\,t} P \, q + \int_{\Omega} \int_{0}^{t} \mathcal{G}(t-\tau) \frac{\mathrm{d}}{\mathrm{d}\,\tau} P(\tau) \, d\tau \, q = 0 \; , \end{split}$$

for all $\mathbf{v} \in V_0$ and $q \in Q_0$.

Postprocessing the microflow in double-porous structure

Macro-level — overall flow

Due to interconnected network of Haversian and Volkmann canals

 $\mathbf{w}^{M} = -\mathbf{K}^{M} \nabla p^{M} \quad \dots \quad \text{from the homogenized macro-model}$

Micro-level 1 — Haversian porosity flow

$$\begin{split} u^{\mu 1} &= -\mathbf{K}^{c} (\nabla p)^{\mu 1, corr} \\ &= -\mathbf{K}^{c} \left(\nabla_{x} p^{M}(x) + \nabla_{y} p^{1} \right) \end{split}$$

Micro-level 2 — canalicular porosity flow

 $\mathbf{w}^{\mu 2, ref} = -\mathbf{K}^m \nabla_y \hat{p} \quad \dots \quad \hat{p} = \hat{p}(e^{\mathbf{x}}_{rs}(\mathbf{u}^M), p^M)$ by the convolution

Let ε_0 be the scale: $\varepsilon_0 = \mu 1/M = \mu 2/\mu 1 \approx 1/100$ an ϕ be the canalicular porosity (vol. frac.), then

$$\mathbf{w}^{\mu 2, real} = \varepsilon_0^2 \mathbf{w}^{\mu 2, ref}$$

 $\mathbf{\bar{v}}^{\mu 2, real} = \phi^{-1} \mathbf{w}^{\mu 2, real} \dots$ mean velocity of the Poiseuille flow

Postprocessing the microflow in double-porous structure

Macro-level — overall flow

Due to interconnected network of Haversian and Volkmann canals

 $\mathbf{w}^{M} = -\mathbf{K}^{M} \nabla p^{M} \dots$ from the homogenized macro-model Micro-level 1 — Haversian porosity flow $\mathbf{w}^{\mu 1} = -\mathbf{K}^{c} (\nabla p)^{\mu 1, corr}$

$$=-\mathbf{K}^{c}\left(
abla _{x}p^{M}(x)+
abla _{y}p^{1}
ight)$$

Micro-level 2 — canalicular porosity flow

 $\mathbf{w}^{\mu 2, ref} = -\mathbf{K}^m
abla_y \hat{p} \quad \dots \quad \hat{p} = \hat{p}(e^{\mathbf{x}}_{rs}(\mathbf{u}^M), p^M)$ by the convolution

Let ε_0 be the scale: $\varepsilon_0 = \mu 1/M = \mu 2/\mu 1 \approx 1/100$ an ϕ be the canalicular porosity (vol. frac.), then

$$\mathbf{w}^{\mu 2, real} = \varepsilon_0^2 \mathbf{w}^{\mu 2, ref}$$

 $\mathbf{\bar{v}}^{\mu 2, real} = \phi^{-1} \mathbf{w}^{\mu 2, real} \dots$ mean velocity of the Poiseuille flow

Postprocessing the microflow in double-porous structure

Macro-level — overall flow

Due to interconnected network of Haversian and Volkmann canals

 $\mathbf{w}^M = -\mathbf{K}^M \nabla p^M \quad \dots \quad \text{from the homogenized macro-model}$ Micro-level 1 — Haversian porosity flow

$$\mathbf{w}^{\mu 1} = -\mathbf{K}^{c} (\nabla p)^{\mu 1, corr}$$
$$= -\mathbf{K}^{c} (\nabla_{x} p^{M}(x) + \nabla_{y} p^{1})$$

Micro-level 2 — canalicular porosity flow

$$\mathbf{w}^{\mu 2, ref} = -\mathbf{K}^m
abla_y \hat{p} \quad \dots \quad \hat{p} = \hat{p}(e^{ imes}_{rs}(\mathbf{u}^M), p^M)$$
 by the convolution

Let ε_0 be the scale: $\varepsilon_0 = \mu 1/M = \mu 2/\mu 1 \approx 1/100$ an ϕ be the canalicular porosity (vol. frac.), then

$$\mathbf{w}^{\mu 2, real} = \varepsilon_0^2 \mathbf{w}^{\mu 2, ref}$$

 $\mathbf{\bar{v}}^{\mu 2, real} = \phi^{-1} \mathbf{w}^{\mu 2, real} \dots mean \ velocity \ of \ the \ Poiseuille \ flow$

Perfusion in deforming tissue - parallel flows

We consider two systems of channels separated by the matrix interface.

Biot continuum:

- incompressible medium
- Double porous matrix $\rightarrow K_{ii}^{\varepsilon} \approx \varepsilon^2$ in the *matrix*.

Find $\mathbf{u}^{\varepsilon}(t) \in V$ and $p^{\varepsilon}(t) \in H^1(\Omega)$ such that

$$\begin{split} &\int_{\Omega} D^{\varepsilon}_{ijkl} e_{kl}(\mathbf{u}^{\varepsilon}) e_{ij}(\mathbf{v}) - \int_{\Omega} p^{\varepsilon} \operatorname{div} \mathbf{v} = \int_{\Omega} \mathbf{f} \cdot \mathbf{v} , \quad \forall \mathbf{v} \in V_0 , \\ &\int_{\Omega} q \operatorname{div} \frac{\mathrm{d}}{\mathrm{d} t} \mathbf{u}^{\varepsilon} + \int_{\Omega} K^{\varepsilon}_{ij} \partial_j p^{\varepsilon} \partial_i q = 0 , \quad \forall q \in H^1(\Omega) , \end{split}$$

where u(0, x) = 0 and p(0, x) = 0.

Homogenized model

- macroscopic displacements u(t)
- ► two macroscopic pressures p₁(t), p₂(t) equilibrium of forces (virtual work):

$$\begin{split} &\int_{\Omega} \left[\mathcal{E}_{ijkl} e_{kl}^{x}(\mathbf{u}(t)) + \int_{0}^{t} \mathcal{H}_{ijkl}(t-\tau) \frac{\mathrm{d}}{\mathrm{d}\,\tau} e_{kl}^{x}(\mathbf{u}(\tau)) \, d\tau \right] \, e_{ij}^{x}(\mathbf{v}) \\ &- \int_{\Omega} e_{ij}^{x}(\mathbf{v}) \, \int_{0}^{t} \tilde{\mathcal{R}}_{ij}^{1}(t-\tau) [p_{1}(\tau) - p_{2}(\tau)] \, d\tau \\ &- \sum_{\alpha=1,2} \int_{\Omega} \left[\frac{|Y_{\alpha}|}{|Y|} \delta_{ij} + \bar{\mathcal{P}}_{ij}^{\alpha} \right] \, p_{\alpha}(t) \, e_{ij}^{x}(\mathbf{v}) = L(\mathbf{v}) \quad \forall \mathbf{v} \in \mathbf{V}_{0} \; , \end{split}$$

two balance-of-mass equations for $\alpha,\beta=1,2,\ \beta\neq\alpha$

$$\begin{split} &\int_{\Omega} \mathcal{C}_{ij}^{\alpha} \, \partial_{j}^{x} p_{\alpha}(t) \, \partial_{i}^{x} q \\ &+ \int_{\Omega} q \, \mathcal{G}^{*} \frac{\mathrm{d}}{\mathrm{d} \, t} \left(p_{\alpha}(t) - p_{\beta}(t) \right) + \int_{\Omega} q \, \int_{0}^{t} \tilde{\mathcal{G}}_{+}(t-\tau) \frac{\mathrm{d}}{\mathrm{d} \, \tau} \left(p_{\alpha}(\tau) - p_{\beta}(\tau) \right) \, d\tau \\ &+ \int_{\Omega} q \, \int_{0}^{t} \tilde{\mathcal{R}}_{ij}^{\alpha}(t-\tau) \frac{\mathrm{d}}{\mathrm{d} \, \tau} e_{ij}^{x}(\mathbf{u}(\tau)) \, d\tau + \int_{\Omega} q \, \left[\frac{|Y_{\alpha}|}{|Y|} \delta_{ij} + \bar{\mathcal{P}}_{ij}^{\alpha} \right] \frac{\mathrm{d}}{\mathrm{d} \, t} e_{ij}^{x}(\mathbf{u}(t)) = 0 \,, \quad \forall q \in \mathbb{C} \,. \end{split}$$

... fluid flows in the two channels and its redistribution between them.

Local problems for *t*-variant correctors

$$\begin{array}{l} \text{Find } \left(\boldsymbol{\tilde{\omega}}^{rs}, \boldsymbol{\tilde{\pi}}^{rs} \right) \in \boldsymbol{\mathsf{H}}_{\#}^{1}(Y) \times H^{1}_{\#0}(Y_{3}) \\ \text{such that } \boldsymbol{\tilde{\pi}}^{rs}(0) = -\boldsymbol{\bar{\pi}}^{rs} \text{ and for } t > 0 \end{array}$$

$$\begin{aligned} a_Y \left(\tilde{\omega}^{rs}(t), \mathbf{v} \right) - \left(\frac{\mathrm{d}}{\mathrm{d} t} \tilde{\pi}^{rs}(t), \operatorname{div}_y \mathbf{v} \right)_{Y_3} &= 0 \quad \forall \mathbf{v} \in \mathbf{H}^1_{\#}(Y) \\ \left(\psi, \operatorname{div}_y \tilde{\omega}^{rs}(t) \right)_{Y_3} + c_{Y_3} \left(\tilde{\pi}^{rs}(t), \psi \right)_{Y_3} &= 0 \quad \forall \psi \in H^1_{\#0}(Y_3) \;, \end{aligned}$$

Find $(\tilde{\boldsymbol{\omega}}^{\alpha}, \tilde{\pi}^{\alpha}) \in \mathbf{H}^{1}_{\#}(Y) \times H^{1}_{\#}(Y_{3})$ such that $\tilde{\pi}^{\alpha}(0)$ "is given" (a Lagrange multiplier) and for t > 0

Corrector *t*-variant basis functions – Local problems

$$\begin{split} \omega^{rs}(t,y) & \text{displacement in } Y & \text{effect of macro-strain } e_{rs}^{\mathsf{x}}(\mathbf{u}) \\ \pi^{rs}(t,y) & \text{pressure in } Y_3 \subset Y & \text{effect of macro-strain } e_{rs}^{\mathsf{x}}(\mathbf{u}) \end{split}$$

 $egin{array}{lll} \omega^lpha(t,y) & {
m displacement in } Y \ \pi^lpha(t,y) & {
m pressure in } Y_3 \subset Y \end{array}$

effect of macro-pressure P_{α} effect of macro-pressure P_{α}

Microscopic Corrector Problems – generic form FE approximation

$$\mathbf{A}\tilde{\mathbf{u}}^{\bigstar}(t) - \mathbf{B}^{T} \frac{\mathrm{d}}{\mathrm{d} t} \tilde{\mathbf{p}}^{\bigstar}(t) = 0$$
$$\mathbf{B}\tilde{\mathbf{u}}^{\bigstar}(t) + \mathbf{C}\tilde{\mathbf{p}}^{\bigstar}(t) = \mathbf{g}^{\bigstar}$$

initial condition: $\tilde{\mathbf{p}}^{\phi}(t=0)$

Matrix operators:

- **A** stiffness in *Y*
- **C** permeability in $Y_3 \subset Y$
- **B** div(\cdot) op. in $Y_3 \subset Y$

Corrector *t*-variant basis functions – Local problems

$$\omega^{rs}(t,y)$$
 displacement in Y effect of macro-strain $e_{rs}^{\times}(\mathbf{u})$
 $\pi^{rs}(t,y)$ pressure in $Y_3 \subset Y$ effect of macro-strain $e_{rs}^{\times}(\mathbf{u})$

 $\omega^{\alpha}(t,y)$ displacement in Y effect of macro-pressure P_{α} $\pi^{\alpha}(t, y)$ pressure in $Y_3 \subset Y$ effect of macro-pressure P_{α}

Microscopic Corrector Problems – generic form FE approximation

$$\mathbf{A}\tilde{\mathbf{u}}^{\bigstar}(t) - \mathbf{B}^{T} \frac{\mathrm{d}}{\mathrm{d} t} \tilde{\mathbf{p}}^{\bigstar}(t) = 0$$
$$\mathbf{B}\tilde{\mathbf{u}}^{\bigstar}(t) + \mathbf{C}\tilde{\mathbf{p}}^{\bigstar}(t) = \mathbf{g}^{\bigstar}$$

initial condition: $\tilde{\mathbf{p}}^{\bigstar}(t=0)$

Matrix operators:

- **A** stiffness in Y
- **C** permeability in $Y_3 \subset Y$
- $\operatorname{div}(\cdot)$ op. in $Y_3 \subset Y$ В

Efficient computing of microscopic correctors ???

Schur complement method: eigenvalue problem:

$$\begin{split} \mathbf{C}\mathbf{q}^k &= \nu^k \mathbf{G}\mathbf{q}^k \;, \quad k = 1, \dots, N_\mathrm{p} \;, \quad \text{where} \quad \mathbf{G} = \mathbf{B}\mathbf{A}^{-1}\mathbf{B}^T \\ \mathbf{E} &:= \mathrm{diag}(\{\nu^k\}) \qquad \mathbf{Q} := \{\mathbf{q}^k\} \end{split}$$

Microscopic correctors ... [small/large] eigenvalues needed?

$$\tilde{\mathbf{p}}^{\alpha}(t) = \mathbf{Q} \left[\exp\left\{-\mathbf{E}t\right\} \tilde{\boldsymbol{\zeta}}^{\alpha}(0) + \mathbf{E}^{-1}(\mathbf{I} - \exp\left\{-\mathbf{E}t\right\}) \mathbf{Q}^{T} \tilde{\mathbf{g}}^{\alpha} \right] ,$$
$$\frac{\mathrm{d}}{\mathrm{d} t} \tilde{\mathbf{p}}^{\alpha}(t) = \mathbf{Q} \left[-\underbrace{\mathbf{E} \exp\left\{-\mathbf{E}t\right\}}_{\mathrm{at } t \approx 0???} \tilde{\boldsymbol{\zeta}}^{\alpha}(0) + \exp\left\{-\mathbf{E}t\right\} \mathbf{Q}^{T} \tilde{\mathbf{g}}^{\alpha} \right]$$

 $\Rightarrow \text{ Initial singularity}$ $t \approx 0 \dots \quad \text{large eigenvalues dominate}$ $t > 0 \dots \quad \text{small eigenvalues are relevant} \Rightarrow \text{ approximati}$ $\Rightarrow \text{ approximate computing of convolution kernels}$ Efficient computing of microscopic correctors ???

Schur complement method: eigenvalue problem:

$$\begin{split} \mathbf{C}\mathbf{q}^k &= \nu^k \mathbf{G}\mathbf{q}^k \;, \quad k = 1, \dots, N_\mathrm{p} \;, \quad \text{where} \quad \mathbf{G} = \mathbf{B}\mathbf{A}^{-1}\mathbf{B}^T \\ \mathbf{E} &:= \mathrm{diag}(\{\nu^k\}) \qquad \mathbf{Q} := \{\mathbf{q}^k\} \end{split}$$

Microscopic correctors ... [small/large] eigenvalues needed?

$$\tilde{\mathbf{p}}^{\alpha}(t) = \mathbf{Q} \left[\exp\left\{-\mathbf{E}t\right\} \tilde{\boldsymbol{\zeta}}^{\alpha}(0) + \mathbf{E}^{-1} (\mathbf{I} - \exp\left\{-\mathbf{E}t\right\}) \mathbf{Q}^{T} \tilde{\mathbf{g}}^{\alpha} \right] ,$$

$$\frac{\mathrm{d}}{\mathrm{d} t} \tilde{\mathbf{p}}^{\alpha}(t) = \mathbf{Q} \left[-\underbrace{\mathbf{E} \exp\left\{-\mathbf{E}t\right\}}_{\mathrm{at} t \approx 0???} \tilde{\boldsymbol{\zeta}}^{\alpha}(0) + \exp\left\{-\mathbf{E}t\right\} \mathbf{Q}^{T} \tilde{\mathbf{g}}^{\alpha} \right]$$

 \Rightarrow Initial singularity

- $t \approx 0$... large eigenvalues dominate
- t > 0 ... small eigenvalues are relevant \Rightarrow approximation
- \Rightarrow approximate computing of convolution kernels

Fading Memory Kernels – synchronous decay ???

Homogenized coefficients — Convolutions

Discrete convolution kernels

$$\int_0^{t_j} \mathcal{F}(t-s) f(s) \, ds \approx \sum_{k=1}^j F^{(j-k)} \overline{f}^{(k)}$$

Approximation of the initial singularity

$$egin{aligned} \mathcal{F}(t) &pprox \mathcal{F}^* \delta_+(t) + ilde{\mathcal{F}}(t) \ \mathcal{F}^* &= \int_0^{t_\epsilon} \mathcal{A}_{\max
u}(\mathcal{F}(t)) \, dt \ ilde{\mathcal{F}}(t) &= \mathcal{A}_{\min
u}(\mathcal{F}(t)) \end{aligned}$$

where $\mathcal{A}_{\min\nu}(\cdot)$

 $\mathcal{A}_{\max\nu}(\cdot)$ approximation by large eigenalues approximation by small eigenalues

Reduced computation of eigenvalues – Approximation

Strategies

compute $\ref{eq:scalar}$ smallest and/or largest eigenvalues, given $\it fine/coars$ mesh

Viscoelasticity – fading memory kernels $\mathcal{H}_{ijkl}(t)$

Reduced computation of eigenvalues – Approximation

Strategies

compute $\ref{eq:scalar}$ smallest and/or largest eigenvalues, given $\it fine/coars$ mesh

Viscoelasticity – fading memory kernels $\mathcal{H}_{ijkl}(t)$

Reduced computation of eigenvalues – Approximation Viscoelasticity – fading memory kernels $\mathcal{H}_{ijkl}(t)$

\Rightarrow observation

- use finer mesh
- small eigenvalues more important than the large ones

Reduced computation of eigenvalues – Approximation Viscoelasticity – fading memory kernels $\mathcal{H}_{ijkl}(t)$

\Rightarrow observation

- use finer mesh
- small eigenvalues more important than the large ones

3D Parallel Flows - Problem Setting

in orthogonal straight channels

macroscopic domain:

- BC on face:
 - ABCD: fixed (u = 0)
 - BFGC: given p₁(t)
 - CGHD: given p₂(t)
- microstructure:

prescribed perfusion pressures:

- we will show:
 - some micro-corrector shape functions
 - some fading memory coefficients
 - macro solution snapshots for

$$t = t_A, t = t_B$$

Microscopic Solution

corrector shape functions

- steady correctors:
 - ▶ left: $\bar{\omega}^{11}$, right: $\bar{p}^{11} \in [-53, 0]$ + perfusion velocities

▶ left: $\bar{\omega}^{21}$, right: $\bar{p}^{21} \in [-0.41, 0.43] + \text{perfusion velocities}$

Macroscopic Solution

- perfused block: color = pressures, arrows = perfusion velocities
- deformation enlarged for visualization (10x)

$$t = t_A$$
: p_1 , \mathbf{w}_1

$$t = t_A$$
: p_2 , w_2

Perfusion of layered structure - model of brain perfusion

Idea:

- brain represented by "spherical" shells
- each shell has a periodic structures
- representation of disconnected arterial and venous trees

Geometry – Layered structure

channels $\Omega_A^{\varepsilon\delta}, \Omega_B^{\varepsilon\delta}$ & matrix $\Omega_M^{\varepsilon\delta}$

$$\Omega^{\delta} = \Omega^{arepsilon \delta}_{M} \cup \Omega^{arepsilon \delta}_{A} \cup \Omega^{arepsilon \delta}_{B}
onumber \ \emptyset = \Omega^{arepsilon \delta}_{A} \cap \Omega^{arepsilon \delta}_{B}$$

double-porous medium: strongly heterogeneous permeability

$$\kappa_{ij}^{\varepsilon}(x) = \delta_{ij} \times \begin{cases} \kappa(\{\frac{x}{\varepsilon}\}) & x \in \Omega_A^{\varepsilon\delta} \cup \Omega_B^{\varepsilon\delta}, \\ \varepsilon^2 \bar{\kappa}(\{\frac{x}{\varepsilon}\}) & x \in \Omega_M^{\varepsilon\delta}, \end{cases}$$

Boundary value problem in Ω^{δ}

Weak formulation $\forall q \in H^1(\Omega^{\delta})/\mathbb{R}$

$$\int_{\Omega^{\varepsilon\delta}_A\cup\Omega^{\varepsilon\delta}_B}\kappa\nabla p^\varepsilon\cdot\nabla q+\int_{\Omega^{\varepsilon\delta}_M}\varepsilon^2\bar\kappa\nabla p^\varepsilon\cdot\nabla q=\int_{\Gamma^{\delta+}\cup\Gamma^{\delta-}}g^{\varepsilon\pm}q\,dS\;,$$

Acoustic waves in ducts with perforated interfaces

Model

- Acoustic medium air
- Perforated interface Γ_0

$$\Omega^G=\Omega^+\cup\Omega^-\cup\Gamma_0$$

▶ Problem: Compute acoustic pressure p^+, p^- in Ω^+, Ω^-

semi-empirical formulae: impedance Z (complex number)

$$\frac{\partial p^+}{\partial n^+} = -\mathrm{i}\frac{\omega\rho}{Z}(p^+ - p^-), \quad \frac{\partial p^-}{\partial n^-} = -\mathrm{i}\frac{\omega\rho}{Z}(p^- - p^+),$$

Acoustic waves in ducts with perforated interfaces

Model

- Acoustic medium air
- Perforated interface Γ_0

$$\Omega^G=\Omega^+\cup\Omega^-\cup\Gamma_0$$

▶ Problem: Compute acoustic pressure p^+, p^- in Ω^+, Ω^-

$$c^{2}\nabla^{2}p^{+} + \omega^{2}p^{+} = 0 \quad \text{in } \Omega^{+} ,$$

$$c^{2}\nabla^{2}p^{-} + \omega^{2}p^{-} = 0 \quad \text{in } \Omega^{-} ,$$

$$\Gamma_{w} \qquad \Gamma_{v} \qquad \Gamma_{w} \qquad \Gamma_{w$$

semi-empirical formulae: impedance Z (complex number)

$$rac{\partial p^+}{\partial n^+} = -\mathrm{i}rac{\omega
ho}{Z}(p^+ - p^-), \quad rac{\partial p^-}{\partial n^-} = -\mathrm{i}rac{\omega
ho}{Z}(p^- - p^+) \; ,$$

Treatment of transmission conditions

Existing approaches

- Quasi-empirical approach: $\frac{\partial p^{\pm}}{\partial n^{\pm}} = \mp i \frac{\omega \rho}{Z} (p^+ p^-)$
- Homogenization inner and outer expansions [Sanchez-Hubert, Sanchez-Palencia,1982], [Bonnet-Ben-Dhia etal., 2007]
- only "flat perforated thin sieve"

Homogenization of acoustic waves in thin perforated layer

- Arbitrary geometry in the layer
- thickness pprox period of perforation pprox scale of holes
- ► Goal: to replace the perforated layer by a "homogenized surface"

Treatment of transmission conditions

Existing approaches

- ▶ Quasi-empirical approach: $\frac{\partial p^{\pm}}{\partial n^{\pm}} = \mp i \frac{\omega \rho}{Z} (p^+ p^-)$
- Homogenization inner and outer expansions [Sanchez-Hubert, Sanchez-Palencia,1982], [Bonnet-Ben-Dhia etal., 2007]
- only "flat perforated thin sieve"

Homogenization of acoustic waves in thin perforated layer

- Arbitrary geometry in the layer
- \blacktriangleright thickness \approx period of perforation \approx scale of holes
- ► Goal: to replace the perforated layer by a "homogenized surface"

Boundary value problem in the transmission layer

- ▶ thickness proportional to the perforation size: $\delta = \varkappa \varepsilon$
- low frequencies (ω independent of ε)
- Neumann problem:

$$\begin{split} c^2 \nabla^2 p^{\varepsilon \delta} + \omega^2 p^{\varepsilon \delta} &= 0 \quad \text{ in } \Omega^{\varepsilon}_{\delta} \ , \\ c^2 \frac{\partial p^{\varepsilon \delta}}{\partial n^{\delta}} &= -\mathrm{i} \omega g^{\varepsilon \delta \pm} \quad \text{ on } \Gamma^{\pm}_{\delta} \quad \dots \text{ transversal velocity} \\ \frac{\partial p^{\varepsilon \delta}}{\partial n^{\delta}} &= 0 \quad \text{ on } \partial S^{\varepsilon}_{\delta} \cup \partial \Omega^{\infty}_{\delta} \quad \dots \text{ solid obstacle,} \end{split}$$

Dilatation and Periodic unfolding

Dilated weak formulation Find $p^{\varepsilon} \in H^1(\Omega^{\varepsilon})$ such that

$$c^{2} \int_{\Omega^{\varepsilon}} \left(\partial_{\alpha} p^{\varepsilon} \partial_{\alpha} q + \frac{1}{\delta^{2}} \partial_{z} p^{\varepsilon} \partial_{z} q \right) - \omega^{2} \int_{\Omega^{\varepsilon}} p^{\varepsilon} q = -i\omega \frac{1}{\delta} \left(\int_{\Gamma^{+}} g^{\varepsilon\delta+} q \, dS + \int_{\Gamma^{-}} g^{\varepsilon\delta-} q \, dS \right)$$

for all $q \in H^1(\Omega^{\varepsilon})$.

Geometry of the perforated interface layer

Microscopic scale — periodic perforation

- ► representative cell $Y = I_y \times] - 1/2, +1/2[$ where $I_y = \{(y_\alpha, 0) : y_\alpha \in]0, 1[, \alpha = 1, 2\}$ ► solid (rigid) part: *S*
- air in $Y^* = Y \setminus S$
- functions periodic in y_{α} , $\alpha = 1, 2$

Limit interface fluxes (\approx velocities)

r.h.s. terms

$$\cdots = -\mathrm{i}\omega \frac{1}{\delta} \left(\int_{\Gamma^+} g^{\varepsilon\delta+} q \, dS + \int_{\Gamma^-} g^{\varepsilon\delta-} q \, dS \right)$$

 $g^{arepsilon\delta\pm}$ must be specified:

▶ assume existence of $g^{0-}, g^{0+} \in L^2(\Gamma_0)$ such that

$$\mathcal{T}^{b}_{\varepsilon}\big(g^{\varepsilon+}\big) \rightharpoonup g^{0+} \text{ and } \mathcal{T}^{b}_{\varepsilon}\big(g^{\varepsilon-}\big) \rightharpoonup g^{0-} \text{ weakly in } L^{2}(\Gamma_{0} \times I^{\pm}_{y}) \;.$$

transversal acoustic velocity does not change when passing the perforated layer, thus, we require

$$\frac{1}{\varepsilon} \left(\int_{\Gamma^+} \phi g^{\varepsilon +} + \int_{\Gamma^-} \phi g^{\varepsilon -} \right) \to 0 \quad \forall \phi \in \mathcal{D}(\Gamma_0) \; .$$

• ... therefore $g^{0\pm} \equiv g^{0+} = -g^{0-}$.

Limit equation – tangent acoustic wave in plane Γ_0

$$c^{2} \int_{\Gamma_{0} \times Y^{*}} \left(\partial_{\alpha}^{x} p^{0} + \partial_{\alpha}^{y} p^{1} \right) \left(\partial_{\alpha}^{x} q^{0} + \partial_{\alpha}^{y} q^{1} \right) + c^{2} \frac{1}{\varkappa^{2}} \int_{\Gamma_{0} \times Y^{*}} \partial_{z} p^{1} \partial_{z} q^{1}$$
$$- \omega^{2} \int_{\Gamma_{0} \times Y^{*}} p^{0} q^{0} = -\frac{\mathrm{i}\omega}{\varkappa} \int_{\Gamma_{0}} g^{0\pm} \left[\int_{I_{y}^{+}} q^{1} dS_{y} - \int_{I_{y}^{-}} q^{1} dS_{y} \right]$$

- ► local (microscopic) problem: $q^0 \equiv 0$, $q^1(x_\alpha, y) = \theta(x_\alpha)\phi(y)$
- ► global (macroscopic) problem: $q^1 \equiv 0$, $q^0 = q^0(x_\alpha)$

Acoustic pressure jump on Γ_0 – acoustic impedance X

Coupling the limit interface acoustic pressures $p^+, p^- \in L^2(\Gamma_0)$ and the "transversal velocity" such that for any $\phi \in \mathcal{D}(\Gamma_0)$

$$\frac{1}{\varepsilon_0}\int_{\Gamma_0}\phi(p^+-p^-)\approx\int_{\Gamma_0}\phi\frac{1}{|I_y|}\left[\int_{I_y^+}p^1\,d\Gamma_y-\int_{I_y^-}p^1\,d\Gamma_y\right]$$

Acoustic impedance (implicit)

$$p^+ - p^- = Xg^{0\pm}$$

- pressure jump $p^+ p^-$
- transversal velocity $g^{0\pm}$

Local microscopic problems — pressure correctors

Scale decoupling — corrector functions:

$$p^{1}(x_{\alpha}, y) = \pi^{\beta}(y)\partial_{\beta}p^{0}(x_{\alpha}) + \mathrm{i}\omega\xi^{\pm}(y)g^{0\pm}(x_{\alpha}) ,$$

Corrector of the tangent interface velocity v_t ≈ ∂_αp⁰ find π^β ∈ H¹_{#(1,2)}(Y), β = 1, 2, such that

$$\int_{\mathbf{Y}^*} \left[\partial^{\mathbf{y}}_{\alpha} \pi^{\beta} \, \partial^{\mathbf{y}}_{\alpha} q + \frac{1}{\varkappa^2} \partial_z \pi^{\beta} \partial_z q \right] = - \int_{\mathbf{Y}^*} \partial^{\mathbf{y}}_{\beta} q \qquad \forall q \in H^1_{\#(1,2)}(\mathbf{Y})$$

Corrector of the normal interface velocity v_n ≈ g^{0±} find ξ[±] ∈ H¹_{#(1,2)}(Y)/ℝ, such that

$$\int_{Y^*} \left[\partial_\alpha^y \xi^{\pm} \, \partial_\alpha^y q + \frac{1}{\varkappa^2} \partial_z \xi^{\pm} \partial_z q \right] = -\frac{|Y|}{c^2 \varkappa} \left(\int_{I_y^+} q \, dS_y - \int_{I_y^-} q \, dS_y \right) \;,$$

for all $q\in H^1_{\#(1,2)}(Y)/\mathbb{R}$

Homogenized interface conditions

Homogenized coefficients

Tangent acoustic diffusion coefficients

$${\cal A}_{lphaeta}=rac{c^2}{|Y|}\int_{Y^*}\partial_\gamma^y(y^eta+\pi^eta)\,\partial_\gamma^y(y^lpha+\pi^lpha)+rac{c^2}{arkappa^2|Y|}\int_{Y^*}\partial_z\pi^eta\partial_z\pi^lpha\;.$$

Coefficients of transversal-to-tangent coupling of velocity

$$B_{\alpha} = \frac{c^2}{|Y|} \int_{Y^*} \partial_{\alpha}^y \xi^{\pm} ,$$

$$\frac{\varkappa}{|I_y|} B_{\alpha} = D_{\alpha} = \frac{1}{|I_y|} \left(\int_{I_y^+} \pi^{\alpha} \, dS_y - \int_{I_y^-} \pi^{\alpha} \, dS_y \right) ,$$

Local transversal impedance

$$F = \frac{1}{|I_y|} \left(\int_{I_y^+} \xi^{\pm} \, dS_y - \int_{I_y^-} \xi^{\pm} \, dS_y \right)$$

Homogenized interface conditions

Acoustic transmission

- Given pressure jump $[p^+ p^-]$
- \blacktriangleright Find $p^0\in H^1(\Gamma_0)$ and $g^{0\pm}\in L^2(\Gamma_0)$ such that

for all $q \in H^1(\Gamma_0)$ and $\psi \in L^2(\Gamma_0)$

Explanation

- transversal pressure jump induces transversal and in-plane fluxes (velocities)
- in-plane waves − A_{αβ} ≈ c² anisotropic velocity² of propagation in-plane resonance: eigenpairs (â², p̂) satisfy

$$-\partial_{\alpha}A_{\alpha\beta}\partial_{\beta}\hat{p} = \frac{|Y^*|}{|Y|}\hat{\omega}^2\hat{p} \quad \text{in } \Gamma_0$$

Homogenized interface conditions

Acoustic transmission

- Given pressure jump $[p^+ p^-]$
- \blacktriangleright Find $p^0\in H^1(\Gamma_0)$ and $g^{0\pm}\in L^2(\Gamma_0)$ such that

$$\int_{\Gamma_{0}} A_{\alpha\beta} \partial_{\beta}^{x} p^{0} \partial_{\alpha}^{x} q - \frac{|Y^{*}|}{|Y|} \omega^{2} \int_{\Gamma_{0}} p^{0} q + i\omega \int_{\Gamma_{0}} g^{0\pm} B_{\alpha} \partial_{\alpha}^{x} q = 0$$
$$-i\omega \int_{\Gamma_{0}} \psi D_{\beta} \partial_{\beta}^{x} p^{0} + \omega^{2} \int_{\Gamma_{0}} Fg^{0\pm} \psi = -\frac{i\omega}{\varepsilon_{0}} \int_{\Gamma_{0}} (p^{+} - p^{-}) \psi$$

for all $q \in H^1(\Gamma_0)$ and $\psi \in L^2(\Gamma_0)$

Explanation

- transversal pressure jump induces transversal and in-plane fluxes (velocities)
- in-plane waves A_{αβ} ≈ c² anisotropic velocity² of propagation in-plane resonance: eigenpairs (â², p̂) satisfy

$$-\partial_{\alpha}A_{\alpha\beta}\partial_{\beta}\hat{p} = \frac{|Y^*|}{|Y|}\hat{\omega}^2\hat{p} \quad \text{ in } \Gamma_0$$

Acoustic problem with homogenized perforation

Acoustic behaviour in $\Omega^+\cup\Omega^-$

$$c^{2}\nabla^{2}p^{+} + \omega^{2}p^{+} = 0 \quad \text{in } \Omega^{+} ,$$

$$c^{2}\nabla^{2}p^{-} + \omega^{2}p^{-} = 0 \quad \text{in } \Omega^{-} ,$$

$$+ \text{ boundary conditions} \quad \text{ on } \partial\Omega^{G} ,$$

$$\Omega^{G} = \Omega^{+} \cup \Omega^{-} \cup \Gamma_{0}$$

Transmission condition — in terms of ho^0 and $g^{0\pm}$

$$\begin{split} c^2 \frac{\partial p^+}{\partial n^+} &= \mathrm{i} \omega g^{0\pm} \text{ on } \Gamma_0 \; , \\ c^2 \frac{\partial p^-}{\partial n^-} &= -\mathrm{i} \omega g^{0\pm} \text{ on } \Gamma_0 \; , \end{split}$$

Interface problem for p^0 and $g^{0\pm}$ be satisfied

Acoustic problem with homogenized perforation

Acoustic behaviour in $\Omega^+\cup\Omega^-$

$$\begin{split} c^2 \nabla^2 p^+ + \omega^2 p^+ &= 0 & \text{ in } \Omega^+ \ , \\ c^2 \nabla^2 p^- + \omega^2 p^- &= 0 & \text{ in } \Omega^- \ , \\ + \text{ boundary conditions} & \text{ on } \partial \Omega^G \ , \\ \Omega^G &= \Omega^+ \cup \Omega^- \cup \Gamma_0 \end{split}$$

ς

Transmission condition — in terms of p^0 and $g^{0\pm}$

$$\begin{split} c^2 \frac{\partial p^+}{\partial n^+} &= \mathrm{i} \omega g^{0\pm} \text{ on } \Gamma_0 \;, \\ c^2 \frac{\partial p^-}{\partial n^-} &= -\mathrm{i} \omega g^{0\pm} \text{ on } \Gamma_0 \;, \end{split}$$

Interface problem for p^0 and $g^{0\pm}$ be satisfied

Discretized interface problem

$$\begin{split} \mathbf{A}\mathbf{p}^{0} - \phi^{*}\omega^{2}\mathbf{M}\mathbf{p}^{0} + \mathrm{i}\omega\mathbf{B}^{T}\mathbf{g}^{0} &= 0\\ -\mathrm{i}\omega\mathbf{D}\mathbf{p}^{0} + \omega^{2}\mathbf{F}\mathbf{g}^{0} &= -\mathrm{i}\omega\mathbf{M}(\mathbf{p}^{+} - \mathbf{p}^{-})\frac{1}{\varepsilon_{0}} \end{split}$$

Schur complement (for ω out-of-resonance)

$$\mathbf{p}^{0} = -\mathrm{i}\omega(\mathbf{A} - \phi^{*}\omega^{2}\mathbf{M})^{-1}\mathbf{B}^{T}\mathbf{g}^{0} ,$$
$$\omega^{2}[\mathbf{F} - \mathbf{D}(\mathbf{A} - \phi^{*}\omega^{2}\mathbf{M})^{-1}\mathbf{B}^{T}]\mathbf{g}^{0} = -\mathrm{i}\omega\mathbf{M}(\mathbf{p}^{+} - \mathbf{p}^{-})\frac{1}{\varepsilon_{0}}$$
upled impedance
$$\mathbf{X}(\omega^{2}) = \omega^{2}[\mathbf{F} - \mathbf{D}(\mathbf{A} - \phi^{*}\omega^{2}\mathbf{M})^{-1}\mathbf{B}^{T}]$$

► Coupled impedance $\mathbf{X}(\omega^2) = \omega^2 [\mathbf{F} - \mathbf{D}(\mathbf{A} - \phi^* \omega^2 \mathbf{M})^{-1} \mathbf{B}']$ $\varepsilon_0 \mathbf{X}(\omega^2) \mathbf{g}^0 = -i\omega \mathbf{M}(\mathbf{p}^+ - \mathbf{p}^-)$

• ... resembles the structure of the standard conditions, since $\mathbf{g}^0 \approx \partial p^+ / \partial n^+ = -\partial p^- / \partial n^-$.

Global problem – FEM discretization

notation	explanation
$\mathbf{\hat{P}} \mathbf{p}^{+/-} \mathbf{C}(\omega), \mathbf{Q}^+(\omega), \mathbf{Q}^-(\omega) \ ar{\mathbf{C}}^{+/-}(\omega) \ ar{\mathbf{h}}$	$\begin{array}{ll} \dots & \text{pressure in } \Omega^+ \cup \Omega^- \cup \partial \Omega \\ \dots & \text{pressure on } \Gamma_0^+ \cup \Gamma_0^- \\ \dots & \text{matrices assoc. with} \\ & c^2 \nabla^2 p + \omega^2 p \text{ and with B.C. in } \bar{\Omega} \setminus \Gamma_0^{+/-} \\ \dots & \text{matrix assoc. with } c^2 \nabla^2 p + \omega^2 p \text{ on } \Gamma_0^+ \cup \Gamma_0^- \\ \dots & \text{r.h.s. (boundary conditions)} \end{array}$
$\begin{bmatrix} \mathbf{C}(\omega), & (\mathbf{Q}^+)^H(\omega), \\ \mathbf{Q}^+(\omega), & \bar{\mathbf{C}}^+(\omega) \\ \mathbf{Q}^-(\omega), & 0, \\ 0, & +\mathrm{i}\omega\mathbf{M}, \end{bmatrix}$	$ \begin{array}{ccc} (\mathbf{Q}^{-})^{H}(\omega), & 0 \\ 0, & -\mathrm{i}\omega\mathbf{M} \\ \bar{\mathbf{C}}^{-}(\omega), & +\mathrm{i}\omega\mathbf{M} \\ -\mathrm{i}\omega\mathbf{M}, & \boldsymbol{\varepsilon}\mathbf{X}(\omega^{2}) \end{array} \right] \cdot \begin{bmatrix} \mathbf{p} \\ \mathbf{p}^{+} \\ \mathbf{p}^{-} \\ \mathbf{g}^{0} \end{bmatrix} = \mathrm{i}\omega \begin{bmatrix} \bar{\mathbf{h}} \\ 0 \\ 0 \\ 0 \end{bmatrix} $

 $\varepsilon \mathbf{X}(\omega^2) \ldots$ coupled impedance for finite scale of the perforation

 $\varepsilon \varkappa = \delta =$ layer thickness [m] $\varkappa \approx 1$

Influence of the perforation geometry

TEST:

- ▶ 3 microstructures (2D acoustics problem)
- Variation of homogenized transmission parameters

Mic.	$A[(m/s)^2]$	B[m]	$F[s^2]$
#1	$1.155 \cdot 10^{5}$	0	$1.391 \cdot 10^{-5}$
#2	$1.704\cdot 10^5$	-0.251	$1.324 \cdot 10^{-5}$
#3	$2.186\cdot 10^5$	-0.897	$4.265 \cdot 10^{-5}$

Mic. #3

Distribution of ξ^{\pm} in Y^* .

Transmission loss TL – Global response – 3 microstructures

3D micro-problems - periodic microstructures

Griso, G., Rohan, E. (2007) On homogenization of diffusion-deformation problem in strongly heterogeneous media, Ricerche di Matematica, 56, 161-188.

Rohan, E. (2006) Modelling large deformation induced microflow in soft biological tissues, Theor. Comput. Fluid Dynamics, 20, 251-276.

Rohan, E. (2008) Homogenization of the perfusion problem in a layered double-porous medium with hierarchical structure, submitted.

E. Rohan. Modelling large deformation induced microflow in soft biological tissues. *Theor. Comput. Fluid Dynamics* (2006) 20: 251-276.

Rohan, E., Cimrman, R., Lukeš, V.: Numerical modelling and homogenized constitutive law of large deforming fluid saturated heterogeneous solids *Computers and Structures* 84 (2006) 1095-111.

Miara, B., Rohan, E., Zidi, M., Labat, B.: Piezomaterials for bone regeneration design - homogenization approach. *Jour. of the Mech. and Phys. of Solids*, 53 (2005) 2529-2556.

E. Rohan and B. Miara. Homogenization and shape sensitivity of microstructures for design of piezoelectric bio-materials. *Mechanics of Advanced Materials and Structures* 13 (2006) 473-485.

E. Rohan and B. Miara (2006): Sensitivity analysis of acoustic wave propagation in strongly heterogeneous piezoelectric composite. In: *Topics on Mathematics for Smart Systems*, World Sci. Publ., 139–207.

A. Ávila, G. Griso, B. Miara, E. Rohan, Multiscale Modeling of Elastic Waves: Theoretical Justification and Numerical Simulation of Band Gaps, *Multiscale Modeling & Simulation*, *SIAM*, Vol 7, 1–21, 2008.