On a traffic problem: Filippov system formulation for N cars

Lubor Buřič, Vladimír Janovský

Department of Mathematics, Institute of Chemical Technology, Prague
Charles University, Faculty of Mathematics and Physics, Prague

PANM 14
Programy a algoritmy numerické matematiky 14
Outline

1. Introduction
 - Follow-the-leader Model of the Traffic Flow
 - Non Physical Solutions and Overtaking Model

2. Overtaking model as a Filippov System
 - Filippov Systems
 - Equivalent Formulation of Follow-the-leader Model
 - Overtaking Model as a Filippov System for N Cars

3. Numerical Simulations
Follow-the-leader Model of the Traffic Flow I

- Consider the microscopic follow-the-leader model of the traffic flow on the circular road of length L

$$
\begin{align*}
x'_i &= y_i, \\
y'_i &= \frac{1}{\tau} [V(x_{i+1} - x_i) - y_i], \quad x_{N+1} = x_1 + L,
\end{align*}
\tag{1a}
$$

$$
\begin{align*}
i = 1, \ldots, N, \text{ where } N \text{ is a number of cars on the road.}
\end{align*}
\tag{1b}
$$

- (x_i, y_i) – position and velocity of the i-th car,
- τ – reaction time of a driver,
- $V : r \mapsto V(r)$ – optimal velocity (OV) function,

- Choice of V imposes a driving law.
- We consider a hyperbolic OV function

$$
V(r) = V_{max} \frac{\tanh (a(r - 1)) + \tanh a}{1 + \tanh a}.
\tag{2}
$$
The difference

\[h_i = x_{i+1} - x_i, \quad i = 1, \ldots, N \]

is called headway of the \(i \)-th car.

Given an initial condition \([x^0, y^0] \in \mathbb{R}^N \times \mathbb{R}^N\), the system (1) defines a flow on \(\mathbb{R}^N \times \mathbb{R}^N \)

\[[x^0, y^0] \mapsto [x(t), y(t)] \equiv \Phi(t, [x^0, y^0]), \quad t \in \mathbb{R}. \]
Follow-the-leader Model of the Traffic Flow III

- Without loss of generality, we may order x^0 as

$$s \leq x_1^0 \leq x_2^0 \leq \cdots \leq x_{N-1}^0 \leq x_N^0 \leq L + s,$$

where $s \in \mathbb{R}$ is an arbitrary phase shift.

- We also assume that all initial velocity components are positive,

$$y^0 = (y_1^0, \ldots, y_N^0), \quad y_i^0 > 0, \quad i = 1, \ldots, N.$$
Non Physical Solutions I

- It is well known that solutions of the follow-the-leader model may become non physical.
- The model breaks down at the time instant when two cars collide.

Collision

The collision occurs at the time t_E for which there exists $k \in \{1, 2, \ldots, N\}$ such that,

$$h_k(t_E) = x_{k+1}(t_E) - x_k(t_E) = 0, \quad y_k(t_E) > y_{k+1}(t_E).$$

By continuity argument, $h_k(t)$ becomes negative for $t_E < t < T$.

Remark

The inequality $y_k(t_E) > y_{k+1}(t_E)$ holds generically.
Example (Periodic non physical solution)

Consider $N = 3$, $L = 4.56281$, $V^{\text{max}} = 7$, $a = 2$, $\tau = 1$ and

$$x^0 = [0, 3.2189, 3.8664], \quad y^0 = [5.0324, 5.6519, 1.9646].$$
Example (Periodic non physical solution)

Consider $N = 3$, $L = 4.56281$, $V^{\text{max}} = 7$, $a = 2$, $\tau = 1$ and

$$x^0 = [0, 3.2189, 3.8664], \quad y^0 = [5.0324, 5.6519, 1.9646].$$

One can observe that at $t = t_E = 0.2074$,

$$h_2(t_E) = 0, \quad y_2(t_E) > y_3(t_E).$$

The natural interpretation is that at $t = t_E$ the car No 2 is about to overtake the car No 3.
Overtaking Model

1. Given an initial condition, system (1) is solved numerically.
2. Locate the least time t_E for which there is $k \in \{1, \ldots, N\}$ such that $h_k(t_E) = 0$.
3. Create new initial condition by swapping $[x_k(t_E), y_k(t_E)]$ and $[x_{k+1}(t_E), y_{k+1}(t_E)]$.
4. Recursively repeating steps 1–3 we get event sequence $\{t_E(j)\}$.
5. Reconstructing car permutations, the trajectory of each car is assembled from pieces defined on intervals $[t_E(j - 1), t_E(j))$.

The resulting trajectory is piecewise smooth.

Our main interest is to analyze long-time behavior of Overtaking Model.

For given event sequence \(\{t_E(j)\}_{j=1}^{Z} \) we construct a sequence of symbols called event map

\[
G_E = \{[i_s \rightarrow j_s]\}_{s=1}^{Z}.
\]

Car No \(i_k \) overtakes the car No \(j_k \) at \(t = t_E(k) \), \(k = 1, \ldots, Z \).

Event map proves to be useful to identify and classify invariant objects of Overtaking Model, in particular oscillatory patterns.

For \(N = 3 \), we managed to identify five types of oscillatory patterns.
Example (Rotating wave of class 1)

Consider $N = 3$, $L = 3.093725$, $V^{\text{max}} = 7$, $a = 2$, $\tau = 1$ and

$$x^0 = [0, 0.7440, 0.9102], \quad y^0 = [4.7421, 2.4211, 3.6912].$$
Example (Rotating wave of class 1)

Consider $N = 3, L = 3.093725, V^{\text{max}} = 7, a = 2, \tau = 1$ and

$$x^0 = [0, 0.7440, 0.9102],\quad y^0 = [4.7421, 2.4211, 3.6912].$$
Example (Rotating wave of class 1)

Consider \(N = 3, L = 3.093725, V_{\text{max}} = 7, a = 2, \tau = 1 \) and

\[
 x^0 = [0, 0.7440, 0.9102], \quad y^0 = [4.7421, 2.4211, 3.6912].
\]
Example (Rotating wave of class 1)

Consider $N = 3$, $L = 3.093725$, $V^{\text{max}} = 7$, $a = 2$, $\tau = 1$ and

$$x^0 = [0, 0.7440, 0.9102], \quad y^0 = [4.7421, 2.4211, 3.6912].$$
Example (Rotating wave of class 1)

Consider $N = 3$, $L = 3.093725$, $V^\text{max} = 7$, $a = 2$, $\tau = 1$ and

$$x^0 = [0, 0.7440, 0.9102], \quad y^0 = [4.7421, 2.4211, 3.6912].$$

- The trajectory is periodic with period $T = 6.2226$.
- The event map reads

$$G_E = \{[1 \rightarrow 2], [3 \rightarrow 2], [3 \rightarrow 1], [2 \rightarrow 1], [2 \rightarrow 3], [1 \rightarrow 3], \ldots \}.$$

- The event map G_E is periodic with period $p_E = 6$.
Filippov Systems

Given a partition \(\{ S_\alpha \} \) of the state space \(\mathbb{R}^n \), the Filippov system of differential equations is generally defined by

\[
x' = f^{(\alpha)}(x), \quad x \in S_\alpha.
\]

(3)

Hence, system (3) has different right-hand sides in different subsets of the phase space. The right-hand side of (3) may be discontinuous in \(x \). In our model, the subsets \(S_\alpha \) are determined in an adaptive way by the current car ordering on the circuit.

Equivalent Formulation of Follow-the-leader Model

Follow-the-leader model in headway–velocity coordinates

\[h_i' = y_{i+1} - y_i, \quad y_{N+1} = y_1 \] \hspace{2cm} (4a)

\[y_i' = \frac{1}{\tau} [V(h_i) - y_i] , \] \hspace{2cm} (4b)

\(i = 1, \ldots, N \)

System (4) is equivalent to (1) up to a shift in \(x \) variable.

To handle the overtaking without creating new initial conditions at \(t = t_E(j) \) we need to

\begin{itemize}
 \item generalize the notion of headway,
 \item modify the OV function.
\end{itemize}
Definition (Gap variable)

The quantity $h_{i,j}$, $i \neq j$, defined as

$$h_{i,j} = x_j - x_i, \quad i < j, \quad h_{i,j} = L - h_{j,i}, \quad i > j$$

is called gap between car No i and car No j.

Proposition

$$h_{i,j} = \sum_{k=i}^{j-1} h_{k,k+1}, \quad i < j, \quad h_{i,j} = L - \sum_{k=j}^{i-1} h_{k,k+1}, \quad i > j$$

(5)

Remark

It is essential that we allow $h_{i,j} < 0$ and $h_{i,j} > L$.
The driving law imposed by the OV function depends on the current headway of each car, it does not depend on how many laps the leader is ahead / behind.

Therefore, to make the gap variables acceptable as the OV function arguments we need to modify the OV function to be:

- L-periodic,
- and consequently discontinuous.

Definition (L-periodic discontinuous OV function)

L-periodic discontinuous OV function $\tilde{V} : r \mapsto \tilde{V}(r)$ is defined via the formula (2) on the interval $[0, L)$ and extended periodically on the whole \mathbb{R}.
Example

Let $L = 3$, $a = 2$, $V^{\text{max}} = 7$.

![Graph of a discontinuous OV function](image-url)
The Overtaking Model in gap–velocity coordinates reads

\[h'_{i,i+1} = y_{i+1} - y_i, \quad i = 1, \ldots, N - 1, \quad (6a) \]

\[y'_i = \frac{1}{\tau} \left[\bar{V}(h_{i,v(i)}) - y_i \right], \quad i = 1, \ldots, N. \quad (6b) \]

Index \(v(i) \) is a number of the car which is the current leader of the \(i \)-th car. Note that \(h_{i,v(i)} \) is computed by relation (5).
Overtaking Model as a Filippov System V
Detection of overtaking

- Overtaking occurs at the time t_E if there exist $i, j \in \{1, 2, \ldots, N\}$, $i \neq j$, such that $h_{i,j}(t_E) = kL$, $k \in \mathbb{Z}$.
 - If $h'_{i,j}(t_E) < 0$ then the car No i overtakes the car No j.
 - If $h'_{i,j}(t_E) > 0$ then the car No i is overtaken by the car No j.

- Since any car can overtake only its leader, it is sufficient to look for roots of equations

$$f_i(t) = h_{i,v(i)}(t) - \left[\frac{h_{i,v(i)}(t_{E}(j))}{L} \right] L = 0, \quad i = 1, \ldots, N,$$

where

$$\lfloor x \rfloor = \max_{n \in \mathbb{Z}} \{ n < x \},$$

$t_{E}(j)$ stands for the last instant at which the overtaking occurred.
Overtaking Model as a Filippov System VI

Update of $v(i)$

- Let the cars are running ordered

 \[\ldots, p, i, j, q, \ldots \]

Then

\[v(p) = i, \quad v(i) = j, \quad v(j) = q. \]

- Let $[i \rightarrow j]$ at the time t_E.
- For $t > t_E$, the running order is

 \[\ldots, p, j, i, q, \ldots \]

- Therefore we need to update $v(p)$, $v(i)$ and $v(j)$ as follows

\[v^{\text{new}}(p) = j = v(i), \quad v^{\text{new}}(i) = q = v(j), \quad v^{\text{new}}(j) = i = v(p) \]
Simulation Procedure I

Initialization

1. Set initial condition

\[h_{i,i+1}(t_0) = h_{i,i+1}^0 \in \mathbb{R}, \quad i = 1, \ldots, N - 1, \]

\[y_i(t_0) = y_i^0 > 0, \quad i = 1, \ldots, N. \]

Set \(t_E(0) = t_0, j = 0. \)

2. Set \(x_1 = 0 \) and

\[x_i = \sum_{k=1}^{i-1} h_{k,k+1}(t_0), \quad i = 2, \ldots, N. \]

3. Compute initial leaders via formula

\[\nu(i) = \arg \min_{j \neq i \mod (x_j - x_i, L)}. \]
Simulation Procedure II

Simulation

1. Integrate system (6) and monitor test functions

 \[f_i(t) = h_{i,v(i)}(t) - \left[\frac{h_{i,v(i)}(t_E(j))}{L} \right] L, \quad i = 1, \ldots, N. \]

2. Locate least \(t_E \) for which there is \(k \in \{1, 2, \ldots, N\} \) such that \(f_k(t_E) = 0 \).

3. \(j = j + 1, \quad t_E(j) = t_E, \quad G_E(j) = [k \rightarrow v(k)], \) update \(v(i) \).

4. Repeat steps 1-3.
“Bifurcation Diagram”

\[N = 4, \ V^\text{max} = 7, \ a = 2, \ \tau = 1, \ L \in [0.72, 7.28] \]
\[L = 6.4186, \ T = 9.3842, \ p_E = 6 \]
\[N = 4, \ V^{\text{max}} = 7, \ a = 2, \ \tau = 1 \]
$L = 6.4186, \ T = 9.3842, \ p_E = 6$

$N = 4, \ V^{\text{max}} = 7, \ a = 2, \ \tau = 1$

- Event map:

$$G_E = \{ [2 \rightarrow 3], [1 \rightarrow 3], [1 \rightarrow 2], [3 \rightarrow 2], [3 \rightarrow 1], [2 \rightarrow 1], \ldots \}$$

- Car No 4 neither overtakes nor is being overtaken.

- G_E is identical (up to a shift) to the Event Map corresponding to rotating wave of class 1 for $N = 3$.

- The pattern satisfies

$$y_i(t + T) = y_i(t), \quad i = 1, 2, 3, 4,$$

$$h_{i,j}(t + T) = h_{i,j}(t), \quad i, j = 1, 2, 3, 4, \ i \neq j.$$
\[L = 1.6477, \quad T = 28.4403, \quad \rho_E = 15 \]

\[N = 4, \quad V^{\text{max}} = 7, \quad a = 2, \quad \tau = 1 \]
\[L = 1.6477, \ T = 28.4403, \ \rho_E = 15 \]

\[N = 4, \ V^{\text{max}} = 7, \ a = 2, \ \tau = 1 \]

- Event map:

\[G_E = \{[1 \rightarrow 2], [3 \rightarrow 2], [4 \rightarrow 2], [1 \rightarrow 2], [3 \rightarrow 2], [3 \rightarrow 1], [2 \rightarrow 1], [4 \rightarrow 1], [3 \rightarrow 1], [2 \rightarrow 1], [2 \rightarrow 3], [1 \rightarrow 3], [4 \rightarrow 3], [2 \rightarrow 3], [1 \rightarrow 3], \ldots \} \]

- Car No 4 is never overtaken.

- The pattern satisfies

\[y_i(t + T) = y_i(t), \quad i = 1, 2, 3, 4, \]

\[h_{i,j}(t + T) = h_{i,j}(t), \quad i, j = 1, 2, 3, \quad i \neq j, \]

\[h_{4,j}(t + T) = h_{4,j}(t) - L, \quad j = 1, 2, 3, \]

\[h_{i,4}(t + T) = h_{i,4}(t) + L, \quad i = 1, 2, 3. \]
Conclusion and Outlook

- Formulation of the Overtaking Model as a Filippov system was proposed.
- Preliminary simulation results:
 - several oscillatory patterns identified,
 - construction of the “bifurcation diagram”.
- The main advantage of the Filippov system formulation is the possibility of using standard software (AUTO97, MATCONT, etc.) to continue these patterns with respect to a parameter.