On a traffic problem:
 Filippov system formulation for N cars

Lubor Buřič, Vladimír Janovský

Department of Mathematics, Institute of Chemical Technology, Prague
Charles University, Faculty of Mathematics and Physics, Prague
PANM 14
Programy a algoritmy numerické matematiky 14

Outline

(1) Introduction

- Follow-the-leader Model of the Traffic Flow
- Non Physical Solutions and Overtaking Model

2 Overtaking model as a Filippov System

- Filippov Systems
- Equivalent Formulation of Follow-the-leader Model
- Overtaking Model as a Filippov System for N Cars
(3) Numerical Simulations

Follow-the-leader Model of the Traffic Flow I

- Consider the microscopic follow-the-leader model of the traffic flow on the circular road of length L

$$
\begin{align*}
& x_{i}^{\prime}=y_{i} \tag{1a}\\
& y_{i}^{\prime}=\frac{1}{\tau}\left[V\left(x_{i+1}-x_{i}\right)-y_{i}\right], \quad x_{N+1}=x_{1}+L \tag{1b}
\end{align*}
$$

$i=1, \ldots, N$, where N is a number of cars on the road.

- $\left(x_{i}, y_{i}\right)$ - position and velocity of the i-th car,
- τ - reaction time of a driver,
- $V: r \mapsto V(r)$ - optimal velocity (OV) function,
- Choice of V imposes a driving law.
- We consider a hyperbolic OV function

$$
\begin{equation*}
V(r)=V^{\max } \frac{\tanh (a(r-1))+\tanh a}{1+\tanh a} \tag{2}
\end{equation*}
$$

Follow-the-leader Model of the Traffic Flow II

- The difference

$$
h_{i}=x_{i+1}-x_{i}, \quad i=1, \ldots, N
$$

is called headway of the i-th car.

- Given an initial condition $\left[x^{0}, y^{0}\right] \in \mathbb{R}^{N} \times \mathbb{R}^{N}$, the system (1) defines a flow on $\mathbb{R}^{N} \times \mathbb{R}^{N}$

$$
\left[x^{0}, y^{0}\right] \mapsto[x(t), y(t)] \equiv \Phi\left(t,\left[x^{0}, y^{0}\right]\right), \quad t \in \mathbb{R}
$$

Follow-the-leader Model of the Traffic Flow III

- Without loss of generality, we may order x^{0} as

$$
s \leq x_{1}^{0} \leq x_{2}^{0} \leq \cdots \leq x_{N-1}^{0} \leq x_{N}^{0} \leq L+s
$$

where $s \in \mathbb{R}$ is an arbitrary phase shift.

- We also assume that all initial velocity components are positive,

$$
y^{0}=\left(y_{1}^{0}, \ldots, y_{N}^{0}\right), \quad y_{i}^{0}>0, \quad i=1, \ldots, N .
$$

Non Physical Solutions I

- It is well known that solutions of the follow-the-leader model may become non physical.
- The model breaks down at the time instant when two cars collide.

Collision

The collision occurs at the time t_{E} for which there exists
$k \in\{1,2, \ldots, N\}$ such that,

$$
h_{k}\left(t_{E}\right)=x_{k+1}\left(t_{E}\right)-x_{k}\left(t_{E}\right)=0, \quad y_{k}\left(t_{E}\right)>y_{k+1}\left(t_{E}\right) .
$$

By continuity argument, $h_{k}(t)$ becomes negative for $t_{E}<t<T$.

Remark

The inequality $y_{k}\left(t_{E}\right)>y_{k+1}\left(t_{E}\right)$ holds generically.

Non Physical Solutions II

Example (Periodic non physical solution)
Consider $N=3, L=4.56281, V^{\text {max }}=7, a=2, \tau=1$ and

$$
x^{0}=[0,3.2189,3.8664], \quad y^{0}=[5.0324,5.6519,1.9646] .
$$

Non Physical Solutions II

Example (Periodic non physical solution)
Consider $N=3, L=4.56281, V^{\max }=7, a=2, \tau=1$ and

$$
x^{0}=[0,3.2189,3.8664], \quad y^{0}=[5.0324,5.6519,1.9646] .
$$

One can observe that at $t=t_{E}=0.2074$,

$$
h_{2}\left(t_{E}\right)=0, \quad y_{2}\left(t_{E}\right)>y_{3}\left(t_{E}\right) .
$$

The natural interpretation is that at $t=t_{E}$ the car No 2 is about to overtake the car No 3.

Overtaking Model

Overtaking Model

© Given an initial condition, system (1) is solved numerically.
(2) Locate the least time t_{E} for which there is $k \in\{1, \ldots, N\}$ such that $h_{k}\left(t_{E}\right)=0$.
(3) Create new initial condition by swapping $\left[x_{k}\left(t_{E}\right), y_{k}\left(t_{E}\right)\right]$ and $\left[x_{k+1}\left(t_{E}\right), y_{k+1}\left(t_{E}\right)\right]$.
(9) Recursively repeating steps $1-3$ we get event sequence $\left\{t_{E}(j)\right\}$.
(0) Reconstructing car permutations, the trajectory of each car is assembled from pieces defined on intervals $\left[t_{E}(j-1), t_{E}(j)\right)$.

- The resulting trajectory is piecewise smooth.
L. B., Vladimír Janovský, On pattern formation in a class of traffic models, Physica D 237 (2008), 28-49.

Event Map

- Our main interest is to analyze long-time behavior of Overtaking Model.
- For given event sequence $\left\{t_{E}(j)\right\}_{j=1}^{Z}$ we construct a sequence of symbols called event map

$$
G_{E}=\left\{\left[i_{s} \rightarrow j_{s}\right]\right\}_{s=1}^{Z}
$$

- Car No i_{k} overtakes the car No j_{k} at $t=t_{E}(k), k=1, \ldots, Z$.
- Event map proves to be useful to identify and classify invariant objects of Overtaking Model, in particular oscillatory patterns.
- For $N=3$, we managed to identify five types of oscillatory patterns.

Rotating Wave of Class 1

Example (Rotating wave of class 1)

Consider $N=3, L=3.093725, V^{\text {max }}=7, a=2, \tau=1$ and

$$
x^{0}=[0,0.7440,0.9102], \quad y^{0}=[4.7421,2.4211,3.6912] .
$$

Rotating Wave of Class 1

Example (Rotating wave of class 1)
Consider $N=3, L=3.093725, V^{\text {max }}=7, a=2, \tau=1$ and

$$
x^{0}=[0,0.7440,0.9102], \quad y^{0}=[4.7421,2.4211,3.6912] .
$$

Rotating Wave of Class 1

Example (Rotating wave of class 1)

Consider $N=3, L=3.093725, V^{\text {max }}=7, a=2, \tau=1$ and

$$
x^{0}=[0,0.7440,0.9102], \quad y^{0}=[4.7421,2.4211,3.6912] .
$$

Rotating Wave of Class 1

Example (Rotating wave of class 1)

Consider $N=3, L=3.093725, V^{\text {max }}=7, a=2, \tau=1$ and

$$
x^{0}=[0,0.7440,0.9102], \quad y^{0}=[4.7421,2.4211,3.6912] .
$$

Rotating Wave of Class 1

Example (Rotating wave of class 1)
Consider $N=3, L=3.093725, V^{\text {max }}=7, a=2, \tau=1$ and

$$
x^{0}=[0,0.7440,0.9102], \quad y^{0}=[4.7421,2.4211,3.6912] .
$$

- The trajectory is periodic with period $T=6.2226$.
- The event map reads

$$
G_{E}=\{[1 \rightarrow 2],[3 \rightarrow 2],[3 \rightarrow 1],[2 \rightarrow 1],[2 \rightarrow 3],[1 \rightarrow 3], \ldots\} .
$$

- The event map G_{E} is periodic with period $p_{E}=6$.

Filippov Systems

Given a partition $\left\{S_{\alpha}\right\}$ of the state space \mathbb{R}^{n}, the Filippov system of differential equations is generally defined by

$$
\begin{equation*}
x^{\prime}=f^{(\alpha)}(x), \quad x \in S_{\alpha} . \tag{3}
\end{equation*}
$$

Hence, system (3) has different right-hand sides in different subsets of the phase space. The right-hand side of (3) may be discontinuous in x. In our model, the subsets S_{α} are determined in an adaptive way by the current car ordering on the circuit.
A. F. Filippov, Differential Equations with Discontinuous Righthand Sides, Kluwer, Dordrecht, 1988.
M. Di Bernardo, C. J. Budd, A. R. Champneys, P. Kowalczyk, Piecewise-smooth Dynamical Systems. Theory and Applications, Springer, London, 2008.

Equivalent Formulation of Follow-the-leader Model

- Follow-the-leader model in headway-velocity coordinates

$$
\begin{align*}
h_{i}^{\prime} & =y_{i+1}-y_{i}, \quad y_{N+1}=y_{1} \tag{4a}\\
y_{i}^{\prime} & =\frac{1}{\tau}\left[V\left(h_{i}\right)-y_{i}\right] \tag{4b}
\end{align*}
$$

$i=1, \ldots, N$

- System (4) is equivalent to (1) up to a shift in x variable.
- To handle the overtaking without creating new initial conditions at $t=t_{E}(j)$ we need to
- generalize the notion of headway,
- modify the OV function.

Overtaking Model as a Filippov System I

Gap variable

Definition (Gap variable)

The quantity $h_{i, j}, i \neq j$, defined as

$$
h_{i, j}=x_{j}-x_{i}, \quad i<j, \quad h_{i, j}=L-h_{j, i}, \quad i>j
$$

is called gap between car No i and car No j.

Proposition

$$
\begin{equation*}
h_{i, j}=\sum_{k=i}^{j-1} h_{k, k+1}, \quad i<j, \quad h_{i, j}=L-\sum_{k=j}^{i-1} h_{k, k+1}, \quad i>j \tag{5}
\end{equation*}
$$

Remark

It is essential that we allow $h_{i, j}<0$ and $h_{i, j}>L$.

Overtaking Model as a Filippov System II

L-periodic discontinuous OV function

- The driving law imposed by the OV function depends on the current headway of each car, it does not depend on how many laps the leader is ahead / behind.
- Therefore, to make the gap variables acceptable as the OV function arguments we need to modify the OV function to be:
- L-periodic,
- and consequently discontinuous.

Definition (L-periodic discontinuous OV function)

L-periodic discontinuous OV function $\widetilde{V}: r \mapsto \widetilde{V}(r)$ is defined via the formula (2) on the interval $[0, L$) and extended periodically on the whole \mathbb{R}.

Overtaking Model as a Filippov System III

L-periodic discontinuous OV function

Example

Let $L=3, a=2, V^{\text {max }}=7$.

Overtaking Model as a Filippov System IV

Differential equations

The Overtaking Model in gap-velocity coordinates reads

$$
\begin{align*}
h_{i, i+1}^{\prime} & =y_{i+1}-y_{i}, \quad i=1, \ldots, N-1 \tag{6a}\\
y_{i}^{\prime} & =\frac{1}{\tau}\left[\widetilde{V}\left(h_{i, v(i)}\right)-y_{i}\right], \quad i=1, \ldots, N \tag{6b}
\end{align*}
$$

Index $v(i)$ is a number of the car which is the current leader of the i-th car. Note that $h_{i, v(i)}$ is computed by relation (5).

Overtaking Model as a Filippov System V

Detection of overtaking

- Overtaking occur at the time t_{E} if there exist $i, j \in\{1,2, \ldots, N\}$, $i \neq j$, such that $h_{i, j}\left(t_{E}\right)=k L, k \in \mathbb{Z}$.
- If $h_{i, j}^{\prime}\left(t_{E}\right)<0$ then the car No i overtakes the car No j.
- If $h_{i, j}^{\prime}\left(t_{E}\right)>0$ then the car No i is overtaken by the car No j.
- Since any car can overtake only its leader, it is sufficient to look for roots of equations

$$
f_{i}(t)=h_{i, v(i)}(t)-\left\lfloor\frac{h_{i, v(i)}\left(t_{E}(j)\right)}{L}\right\rfloor L=0, \quad i=1, \ldots, N
$$

where

$$
\lfloor x\rfloor=\max _{n \in \mathbb{Z}}\{n<x\}
$$

$t_{E}(j)$ stands for the last instant at which the overtaking occured.

Overtaking Model as a Filippov System VI

 Update of v (i)- Let the cars are running ordered

$$
\ldots, p, i, j, q, \ldots
$$

Then

$$
v(p)=i, \quad v(i)=j, \quad v(j)=q
$$

- Let $[i \rightarrow j]$ at the time t_{E}.
- For $t>t_{E}$, the running order is

$$
\ldots, p, j, i, q, \ldots
$$

- Therefore we need to update $v(p), v(i)$ and $v(j)$ as follows

$$
v^{\text {new }}(p)=j=v(i), \quad v^{\text {new }}(i)=q=v(j), \quad v^{\text {new }}(j)=i=v(p)
$$

Simulation Procedure I

Initialization

(1) Set initial condition

$$
\begin{aligned}
h_{i, i+1}\left(t_{0}\right) & =h_{i, i+1}^{0} \in \mathbb{R}, \quad i=1, \ldots, N-1, \\
y_{i}\left(t_{0}\right) & =y_{i}^{0}>0, \quad i=1, \ldots, N .
\end{aligned}
$$

Set $t_{E}(0)=t_{0}, j=0$.
(2) Set $x_{1}=0$ and

$$
x_{i}=\sum_{k=1}^{i-1} h_{k, k+1}\left(t_{0}\right), \quad i=2, \ldots, N .
$$

(3) Compute initial leaders via formula

$$
v(i)=\arg \min _{j \neq i} \bmod \left(x_{j}-x_{i}, L\right) .
$$

Simulation Procedure II

Simulation

(1) Integrate system (6) and monitor test functions

$$
f_{i}(t)=h_{i, v(i)}(t)-\left\lfloor\frac{h_{i, v(i)}\left(t_{E}(j)\right)}{L}\right\rfloor L, \quad i=1, \ldots, N
$$

(2) Locate least t_{E} for which there is $k \in\{1,2, \ldots, N\}$ such that $f_{k}\left(t_{E}\right)=0$.
(3) $j=j+1, t_{E}(j)=t_{E}, G_{E}(j)=[k \rightarrow v(k)]$, update $v(i)$.
(4) Repeat steps 1-3.

"Bifurcation Diagram"

$$
N=4, V^{\max }=7, a=2, \tau=1, L \in[0.72,7.28]
$$

$L=6.4186, T=9.3842, p_{E}=6$
 $N=4, V^{\max }=7, a=2, \tau=1$

$L=6.4186, T=9.3842, p_{E}=6$
$N=4, V^{\text {ma }}=7, a=2, \tau=1$

- Event map:

$$
G_{E}=\{[2 \rightarrow 3],[1 \rightarrow 3],[1 \rightarrow 2],[3 \rightarrow 2],[3 \rightarrow 1],[2 \rightarrow 1], \ldots\}
$$

- Car No 4 neither overtakes nor is being overtaken.
- G_{E} is identical (up to a shift) to the Event Map corresponding to rotating wave of class 1 for $N=3$.
- The pattern satisfies

$$
\begin{aligned}
y_{i}(t+T) & =y_{i}(t), \quad i=1,2,3,4, \\
h_{i, j}(t+T) & =h_{i, j}(t), \quad i, j=1,2,3,4, i \neq j,
\end{aligned}
$$

$L=1.6477, T=28.4403, p_{E}=15$

$N=4, V^{\text {max }}=7, a=2, \tau=1$

$L=1.6477, T=28.4403, p_{E}=15$
$N=4, V^{\text {max }}=7, a=2, \tau=1$

- Event map:

$$
\begin{aligned}
G_{E}= & \{[1 \rightarrow 2],[3 \rightarrow 2],[4 \rightarrow 2],[1 \rightarrow 2],[3 \rightarrow 2], \\
& {[3 \rightarrow 1],[2 \rightarrow 1],[4 \rightarrow 1],[3 \rightarrow 1],[2 \rightarrow 1], } \\
& {[2 \rightarrow 3],[1 \rightarrow 3],[4 \rightarrow 3],[2 \rightarrow 3],[1 \rightarrow 3], \ldots\} }
\end{aligned}
$$

- Car No 4 is never overtaken.
- The pattern satisfies

$$
\begin{aligned}
y_{i}(t+T) & =y_{i}(t), \quad i=1,2,3,4, \\
h_{i, j}(t+T) & =h_{i, j}(t), \quad i, j=1,2,3, \quad i \neq j, \\
h_{4, j}(t+T) & =h_{4, j}(t)-L, \quad j=1,2,3, \\
h_{i, 4}(t+T) & =h_{i, 4}(t)+L, \quad i=1,2,3 .
\end{aligned}
$$

Conclusion and Outlook

- Formulation of the Overtaking Model as a Filippov system was proposed.
- Preliminary simulation results:
- several oscillatory patterns identified,
- construction of the "bifurcation diagram".
- The main advantage of the Filipov system formulation is the possibility of using standard software (AUTO97, MATCONT, etc.) to continue these patterns with respect to a parameter.

