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• Geometry of the problem

• The problem with linear boundary conditions

• The problem with a nonlinear boundary condition on the outflow

We consider a flow through the cascade of profiles. We assume that the fluid is
viscous, incompressible, Newtonian and the flow is steady and 2D.
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1. The problem with linear boundary conditions

1.1. The equations of motion

The conservation of momentum is expressed by the Navier–Stokes equation

ω(u)u⊥ = −∇q + ν (−∂2, ∂1)ω(u) + f (1)

where q = p+ 1
2 (u2

1 + u2
2) is the so-called Bernoulli pressure,

ω(u) = ∂1u2 − ∂2u1 is the vorticity, and u⊥ = (−u2, u1).

u = (u1, u2) . . . velocity,

p . . . pressure,

f = (f1, f2) . . . specific volume force,

ν > 0 . . . kinematic viscosity.
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The condition of incompressibility is expressed by the equation of continuity

divu = 0. (2)

It also expresses the conservation of mass.
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1.2 Boundary conditions

The inhomogeneous Dirichlet condition on the inflow:

u = g on Γi (3)

where g is a given velocity on Γi.

The conditions of periodicity on Γ− and Γ+:

(4)u(x1, x2 + τ) = u(x1, x2)

∂u

∂n
(x1, x2 + τ) = −∂u

∂n
(x1, x2)

q(x1, x2 + τ) = q(x1, x2)

for (x1, x2) ∈ Γ− (5)

(6)
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The homogeneous Dirichlet condition on the profile:

u = 0 on Γw (7)

The linear ”do–nothing” condition on the outflow Γo:

q = h1 − ν ω(u) = h2 (8)
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1.3 Function spaces and the weak formulation

H1(Ω) (respectively H1(Ω)2) is the Sobolev space of scalar (respectively vector)
functions, defined a.e. in Ω, with the norm ‖ . ‖1.

Hs(Γi)
2 (for 0 < s < 1) is the Sobolev–Slobodetski space of vector functions,

defined a.e. in Γi, with the norm ‖ . ‖s; Γi.

V =
{
v ∈ H1(Ω)2; v = 0 s.v. v Γi ∪ Γw,

v(x1, x2 + τ) = v(x1, x2) for a.a. (x1, x2) ∈ Γ−,

div v = 0 a.e. in Ω
}
.

(Conditions on Γi, Γw a Γ− are fulfilled in the sense of traces.)
The norm in V is

|||v||| := ‖∇v‖L2(Ω)4 .
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Formal derivation of the weak formulation:

In order to derive formally the weak formulation of the problem, we multiply
equation (1) by an arbitrary test function v = (v1, v2) ∈ V , integrate in Ω and
use Green’s theorem. We obtain

a(u,v) = (f ,v)L2(Ω)2 + b(h,v) ∀v ∈ V,

where

a(u,v) := a1(u,v) + a2(u,u,v),

a1(u,v) := ν
(
ω(u), ω(v)

)
L2(Ω) ,

a2(u,v,w) :=

∫
Ω
ω(u)v⊥ ·w dx,

b(h,v) := −
∫

Γo
h · v dS.

The term implying the form of the condition on Γo:
∫

Γo
[ν ω(u) v2 − q v1] dS
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The weak formulation of the problem (1)–(8).

Definition 1. Let g ∈ Hs(Γi)
2 (for some s ∈ (1

2 , 1]) satisfy the condition
g(A1) = g(A0). Let f ∈ L2(Ω)2 and h ∈ L2(Γo)

2. The weak solution of the
problem (1)–(8) is a vector function u ∈ H1(Ω)2 which satisfies the identity

a(u,v) = (f ,v)0 + b(h,v) (9)

for all test functions v ∈ V , the equation of continuity (3) a.e. in Ω and the
boundary conditions (3)–(8) (on Γi, Γw, Γ− and Γ+) in the sense of traces.
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1.4 Existence and uniqueness of a weak solution

Lemma 1. There exists a constant c1 > 0 independent of g and a divergence–

free extension g∗ ∈ H1(Ω)2 of function g from Γi onto Ω such that g∗ = 0 on

Γw, g∗ satisfies the condition of periodicity

g∗(x1, x2 + τ) = g∗(x1, x2) for (x1, x2) ∈ Γ− (10)

and the estimate

‖g∗‖1 ≤ c1 ‖g‖s; Γi . (11)

Now we construct the weak solution u in the form u = g∗ + z where z ∈ V
is a new unknown function. Substituting u = g∗ + z into equation (9), we get

the following problem: Find a function z ∈ V such that it satisfies the equation

a(g∗ + z,v) = (f ,v)0 + b(h,v) (12)

for all v ∈ V .
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Theorem (on the existence of a weak solution). There exists ε > 0 such

that if ‖g‖s; Γi < ε then there exists a solution u of the problem defined in

Definition 1.

Principle of the proof.

We use the Galerkin method and we construct approximations zn in n–dimen-

sional subspaces Vn of V . The fundamental tool which guarantees the existence

of the approximations is the coerciveness of the bilinear form a in space V .

Applying successively estimates of the forms a1, a2 and b, we can derive the

next lemma.

Lemma 2. There exist positive constants c2 and c3 such that

a(g∗ + z, z) ≥ |||z|||
(
ν |||z||| − ν c4 c5 ‖g‖Hs(Γi)2 − c2 ‖g‖2

Hs(Γi)2

−c3 ‖g‖Hs(Γi)2 |||z|||
)

(13)

Now the coerciveness of the form a follows from (13) and the assumption on a

sufficient smallness of ‖g‖s; Γi.
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Theorem (on the uniqueness of a weak solution). There exists R > 0

such that if u1 and u2 are two solutions of the problem from Definition 1 such

that ‖∇u1‖L2(Ω)4 ≤ R then u1 = u2.

Principle of the proof. The structure of the form a2 implies that

a2(u,v,v) = 0, for all u and v from H1(Ω)2.

a(u1,v) − a(u2,v) = 0.

a1(u1 − u2,u1 − u2) = ν |||u1 − u2|||2

|a2(u1,u1,u1 − u2)− a2(u2,u2,u1 − u2)
∣∣ ≤ c6R |||u1 − u2|||2

ν |||u1 − u2|||2 ≤ c6R |||u1 − u2|||2.
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2. The problem with a nonlinear boundary condition
on the outflow

2.1. Equations of motion

The conservation of momentum is expressed by the Navier–Stokes equation

in the form

(u · ∇)u = f − ∇p + ν ∆u. (14)

The condition of incompressibility is expressed by the equation of continuity

divu = 0. (15)
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2.2 Boundary conditions

Boundary conditions on Γi,Γ+,Γ− and Γw are the same as in Section 1.

The nonlinear condition on the outflow Γo:

− ν ∂u
∂n

+ pn− 1

2
(u · n)−u = h. (16)
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2.3 The weak formulation

The used integral identity now has the form

a(u,v) = (f ,v)L2(Ω)2 + b(h,v) ∀v ∈ V,

where

a(u,v) := a1(u,v) + a2(u,u,v) + a3(u,u,v),

a1(u,v) := ν

∫
Ω

2∑
i,j=1

∂ui
∂xj

∂vi
∂xj

dx,

a2(u,v,w) :=

∫
Ω

2∑
i,j=1

uj
∂vi
∂xj

wi dx,

a3(u,v,w) :=

∫
Γo

1

2
(u · n)− v ·w dS,

b(h,v) := −
∫

Γo
h · v dS.
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The definition of the weak solution is formally identical with Definition 1, we

only use form a in the form given on the preceding page.

Definition 2. Let g ∈ Hs(Γi)
2 (for some s ∈ (1

2 , 1]) satisfy the condition

g(A1) = g(A0). Let f ∈ L2(Ω)2 and h ∈ L2(Γo)
2. The weak solution of the

problem (14), (15), (3)–(7), (16) is a vector function u ∈ H1(Ω)2 which satisfies

the identity

a(u,v) = (f ,v)0 + b(h,v) (17)

for all test functions v ∈ V , the equation of continuity (15) a.e. in Ω and the

boundary conditions (3)–(7) (on Γi, Γw, Γ− and Γ+) in the sense of traces.

Theorem (on the existence of a weak solution). There exists ε > 0 such

that if ‖g‖s; Γi < ε then there exists a solution u of the problem defined in

Definition 2.
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Theorem (on the uniqueness of a weak solution). There exists R > 0

such that if u1 and u2 are two solutions of the problem from Definition 2 such

that ‖∇u1‖L2(Ω)4 ≤ R and ‖∇u2‖L2(Ω)4 ≤ R then u1 = u2.

Principle of the proof.

a(u1,v) − a(u2,v) = 0.

a1(u1 − u2,u1 − u2) = ν |||u1 − u2|||2

|a2(u1,u1,u1 − u2)− a2(u2,u2,u1 − u2)
∣∣ ≤ c7R |||u1 − u2|||2

|a3(u1,u1,u1 − u2)− a3(u2,u2,u1 − u2)| ≤ c8R |||u1 − u2|||2

ν |||u1 − u2|||2 ≤ c7 + c8R |||u1 − u2|||2.

The derivation of the estimate for a3 is technically more complicated.
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