On the problem of uniqueness for the steady Navier-Stokes equation in a cascade of profiles

Tomáš Neustupa
Faculty of Mechanical Engineering, Czech Technical University Prague PANM 2008

- Geometry of the problem
- The problem with linear boundary conditions
- The problem with a nonlinear boundary condition on the outflow

We consider a flow through the cascade of profiles. We assume that the fluid is viscous, incompressible, Newtonian and the flow is steady and 2D.

1. The problem with linear boundary conditions

1.1. The equations of motion

The conservation of momentum is expressed by the Navier-Stokes equation

$$
\begin{equation*}
\omega(\boldsymbol{u}) \boldsymbol{u}^{\perp}=-\nabla q+\nu\left(-\partial_{2}, \partial_{1}\right) \omega(\boldsymbol{u})+\boldsymbol{f} \tag{1}
\end{equation*}
$$

where $q=p+\frac{1}{2}\left(u_{1}^{2}+u_{2}^{2}\right)$ is the so-called Bernoulli pressure, $\omega(\boldsymbol{u})=\partial_{1} u_{2}-\partial_{2} u_{1}$ is the vorticity, and $\boldsymbol{u}^{\perp}=\left(-u_{2}, u_{1}\right)$.

$$
\begin{array}{lll}
\boldsymbol{u}=\left(u_{1}, u_{2}\right) & \cdots & \text { velocity } \\
p & \cdots & \text { pressure } \\
\boldsymbol{f}=\left(f_{1}, f_{2}\right) & \cdots & \text { specific volume force } \\
\nu>0 & \cdots & \text { kinematic viscosity }
\end{array}
$$

The condition of incompressibility is expressed by the equation of continuity

$$
\begin{equation*}
\operatorname{div} \boldsymbol{u}=0 \tag{2}
\end{equation*}
$$

It also expresses the conservation of mass.

1.2 Boundary conditions

The inhomogeneous Dirichlet condition on the inflow:

$$
\begin{array}{l|l}
\boldsymbol{u}=\boldsymbol{g} & \text { on } \Gamma_{i} \tag{3}
\end{array}
$$

where \boldsymbol{g} is a given velocity on Γ_{i}.
The conditions of periodicity on Γ_{-}and Γ_{+}:

$$
\begin{align*}
\boldsymbol{u}\left(x_{1}, x_{2}+\tau\right) & =\boldsymbol{u}\left(x_{1}, x_{2}\right) \tag{4}\\
\frac{\partial \boldsymbol{u}}{\partial \boldsymbol{n}}\left(x_{1}, x_{2}+\tau\right) & =-\frac{\partial \boldsymbol{u}}{\partial \boldsymbol{n}}\left(x_{1}, x_{2}\right) \tag{5}\\
q\left(x_{1}, x_{2}+\tau\right) & =q\left(x_{1}, x_{2}\right) \tag{6}
\end{align*} \quad \text { for }\left(x_{1}, x_{2}\right) \in \Gamma_{-}
$$

The homogeneous Dirichlet condition on the profile:

$$
\begin{equation*}
\boldsymbol{u}=\mathbf{0} \quad \text { on } \Gamma_{w} \tag{7}
\end{equation*}
$$

The linear "do-nothing" condition on the outflow Γ_{0} :

$$
\begin{equation*}
q=h_{1} \quad-\nu \omega(\boldsymbol{u})=h_{2} \tag{8}
\end{equation*}
$$

1.3 Function spaces and the weak formulation

$H^{1}(\Omega)$ (respectively $\left.H^{1}(\Omega)^{2}\right)$ is the Sobolev space of scalar (respectively vector) functions, defined a.e. in Ω, with the norm $\|.\|_{1}$.
$H^{s}\left(\Gamma_{i}\right)^{2}$ (for $0<s<1$) is the Sobolev-Slobodetski space of vector functions, defined a.e. in Γ_{i}, with the norm $\|.\|_{s ; \Gamma_{i}}$.

$$
\begin{aligned}
& V=\left\{\boldsymbol{v} \in H^{1}(\Omega)^{2} ; \quad \boldsymbol{v}=\mathbf{0} \text { s.v. v } \Gamma_{i} \cup \Gamma_{w},\right. \\
& \boldsymbol{v}\left(x_{1}, x_{2}+\tau\right)=\boldsymbol{v}\left(x_{1}, x_{2}\right) \text { for a.a. }\left(x_{1}, x_{2}\right) \in \Gamma_{-}, \\
&\operatorname{div} \boldsymbol{v}=0 \text { a.e. in } \Omega\} .
\end{aligned}
$$

(Conditions on Γ_{i}, Γ_{w} a Γ_{-}are fulfilled in the sense of traces.)
The norm in V is

$$
\|\boldsymbol{v}\|:=\|\nabla \boldsymbol{v}\|_{L^{2}(\Omega)^{4}}
$$

Formal derivation of the weak formulation:

In order to derive formally the weak formulation of the problem, we multiply equation (1) by an arbitrary test function $\boldsymbol{v}=\left(v_{1}, v_{2}\right) \in V$, integrate in Ω and use Green's theorem. We obtain

$$
a(\boldsymbol{u}, \boldsymbol{v})=(\boldsymbol{f}, \boldsymbol{v})_{L^{2}(\Omega)^{2}}+b(\boldsymbol{h}, \boldsymbol{v}) \quad \forall \boldsymbol{v} \in V,
$$

where

$$
\begin{array}{lll}
a(\boldsymbol{u}, \boldsymbol{v}) & := & a_{1}(\boldsymbol{u}, \boldsymbol{v})+a_{2}(\boldsymbol{u}, \boldsymbol{u}, \boldsymbol{v}) \\
a_{1}(\boldsymbol{u}, \boldsymbol{v}) & := & \nu(\omega(\boldsymbol{u}), \omega(\boldsymbol{v}))_{L^{2}(\Omega)} \\
a_{2}(\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}) & := & \int_{\Omega} \omega(\boldsymbol{u}) \boldsymbol{v}^{\perp} \cdot \boldsymbol{w} \mathrm{d} \boldsymbol{x} \\
b(\boldsymbol{h}, \boldsymbol{v}) & := & -\int_{\Gamma_{o}} \boldsymbol{h} \cdot \boldsymbol{v} \mathrm{~d} S
\end{array}
$$

The term implying the form of the condition on $\Gamma_{o}: \int_{\Gamma_{o}}\left[\nu \omega(\boldsymbol{u}) v_{2}-q v_{1}\right] \mathrm{d} S$

The weak formulation of the problem (1)-(8).

Definition 1. Let $\boldsymbol{g} \in H^{s}\left(\Gamma_{i}\right)^{2}$ (for some $\left.s \in\left(\frac{1}{2}, 1\right]\right)$ satisfy the condition $\boldsymbol{g}\left(A_{1}\right)=\boldsymbol{g}\left(A_{0}\right)$. Let $\boldsymbol{f} \in L^{2}(\Omega)^{2}$ and $\boldsymbol{h} \in L^{2}\left(\Gamma_{o}\right)^{2}$. The weak solution of the problem (1)-(8) is a vector function $\boldsymbol{u} \in H^{1}(\Omega)^{2}$ which satisfies the identity

$$
\begin{equation*}
a(\boldsymbol{u}, \boldsymbol{v})=(\boldsymbol{f}, \boldsymbol{v})_{0}+b(\boldsymbol{h}, \boldsymbol{v}) \tag{9}
\end{equation*}
$$

for all test functions $\boldsymbol{v} \in V$, the equation of continuity (3) a.e. in Ω and the boundary conditions (3)-(8) (on $\Gamma_{i}, \Gamma_{w}, \Gamma_{-}$and Γ_{+}) in the sense of traces.

1.4 Existence and uniqueness of a weak solution

Lemma 1. There exists a constant $c_{1}>0$ independent of \boldsymbol{g} and a divergencefree extension $\boldsymbol{g}^{*} \in H^{1}(\Omega)^{2}$ of function \boldsymbol{g} from Γ_{i} onto Ω such that $\boldsymbol{g}^{*}=\mathbf{0}$ on $\Gamma_{w}, \boldsymbol{g}^{*}$ satisfies the condition of periodicity

$$
\begin{equation*}
\boldsymbol{g}^{*}\left(x_{1}, x_{2}+\tau\right)=\boldsymbol{g}^{*}\left(x_{1}, x_{2}\right) \quad \text { for }\left(x_{1}, x_{2}\right) \in \Gamma_{-} \tag{10}
\end{equation*}
$$

and the estimate

$$
\begin{equation*}
\left\|\boldsymbol{g}^{*}\right\|_{1} \leq c_{1}\|\boldsymbol{g}\|_{s ; \Gamma_{i}} \tag{11}
\end{equation*}
$$

Now we construct the weak solution \boldsymbol{u} in the form $\boldsymbol{u}=\boldsymbol{g}^{*}+\boldsymbol{z}$ where $\boldsymbol{z} \in V$ is a new unknown function. Substituting $\boldsymbol{u}=\boldsymbol{g}^{*}+\boldsymbol{z}$ into equation (9), we get the following problem: Find a function $\boldsymbol{z} \in V$ such that it satisfies the equation

$$
\begin{equation*}
a\left(\boldsymbol{g}^{*}+\boldsymbol{z}, \boldsymbol{v}\right)=(\boldsymbol{f}, \boldsymbol{v})_{0}+b(\boldsymbol{h}, \boldsymbol{v}) \tag{12}
\end{equation*}
$$

for all $\boldsymbol{v} \in V$.

Theorem (on the existence of a weak solution). There exists $\varepsilon>0$ such that if $\|\boldsymbol{g}\|_{s ; \Gamma_{i}}<\varepsilon$ then there exists a solution \boldsymbol{u} of the problem defined in Definition 1.

Principle of the proof.

We use the Galerkin method and we construct approximations \boldsymbol{z}_{n} in n-dimensional subspaces V_{n} of V. The fundamental tool which guarantees the existence of the approximations is the coerciveness of the bilinear form a in space V. Applying successively estimates of the forms a_{1}, a_{2} and b, we can derive the next lemma.

Lemma 2. There exist positive constants c_{2} and c_{3} such that

$$
\begin{align*}
a\left(\boldsymbol{g}^{*}+\boldsymbol{z}, \boldsymbol{z}\right) \geq & \|\boldsymbol{z}\|\left(\nu\|\boldsymbol{z}\|-\nu c_{4} c_{5}\|\boldsymbol{g}\|_{H^{s}\left(\Gamma_{i}\right)^{2}}-c_{2}\|\boldsymbol{g}\|_{H^{s}\left(\Gamma_{i}\right)^{2}}^{2}\right. \\
& \left.-c_{3}\|\boldsymbol{g}\|_{H^{s}\left(\Gamma_{i}\right)^{2}}\|\boldsymbol{z}\|\right) \tag{13}
\end{align*}
$$

Now the coerciveness of the form a follows from (13) and the assumption on a sufficient smallness of $\|\boldsymbol{g}\|_{s ; \Gamma_{i}}$.

Theorem (on the uniqueness of a weak solution). There exists $R>0$ such that if \boldsymbol{u}_{1} and \boldsymbol{u}_{2} are two solutions of the problem from Definition 1 such that $\left\|\nabla \boldsymbol{u}_{1}\right\|_{L^{2}(\Omega)^{4}} \leq R$ then $\boldsymbol{u}_{1}=\boldsymbol{u}_{2}$.

Principle of the proof. The structure of the form a_{2} implies that

$$
\begin{aligned}
& a_{2}(\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{v})=0, \quad \text { for all } \boldsymbol{u} \text { and } \boldsymbol{v} \text { from } H^{1}(\Omega)^{2} . \\
& a\left(\boldsymbol{u}_{1}, \boldsymbol{v}\right)-a\left(\boldsymbol{u}_{2}, \boldsymbol{v}\right)=0 . \\
& a_{1}\left(\boldsymbol{u}_{1}-\boldsymbol{u}_{2}, \boldsymbol{u}_{1}-\boldsymbol{u}_{2}\right)=\nu\left\|\boldsymbol{u}_{1}-\boldsymbol{u}_{2}\right\| \|^{2} \\
& \left|a_{2}\left(\boldsymbol{u}_{1}, \boldsymbol{u}_{1}, \boldsymbol{u}_{1}-\boldsymbol{u}_{2}\right)-a_{2}\left(\boldsymbol{u}_{2}, \boldsymbol{u}_{2}, \boldsymbol{u}_{1}-\boldsymbol{u}_{2}\right)\right| \leq c_{6} R\left\|\boldsymbol{u}_{1}-\boldsymbol{u}_{2}\right\|^{2}
\end{aligned}
$$

$$
\nu\left\|\boldsymbol{u}_{1}-\boldsymbol{u}_{2}\right\|\left\|^{2} \leq c_{6} R\right\| \boldsymbol{u}_{1}-\boldsymbol{u}_{2}\| \|^{2}
$$

2. The problem with a nonlinear boundary condition on the outflow

2.1. Equations of motion

The conservation of momentum is expressed by the Navier-Stokes equation in the form

$$
\begin{equation*}
(\boldsymbol{u} \cdot \nabla) \boldsymbol{u}=\boldsymbol{f}-\nabla p+\nu \Delta \boldsymbol{u} . \tag{14}
\end{equation*}
$$

The condition of incompressibility is expressed by the equation of continuity

$$
\begin{equation*}
\operatorname{div} \boldsymbol{u}=0 . \tag{15}
\end{equation*}
$$

2.2 Boundary conditions

Boundary conditions on $\Gamma_{i}, \Gamma_{+}, \Gamma_{-}$and Γ_{w} are the same as in Section 1.

The nonlinear condition on the outflow Γ_{o} :

$$
\begin{equation*}
-\nu \frac{\partial \boldsymbol{u}}{\partial \boldsymbol{n}}+p \boldsymbol{n}-\frac{1}{2}(\boldsymbol{u} \cdot \boldsymbol{n})^{-} \boldsymbol{u}=\boldsymbol{h} \tag{16}
\end{equation*}
$$

2.3 The weak formulation

The used integral identity now has the form

$$
a(\boldsymbol{u}, \boldsymbol{v})=(\boldsymbol{f}, \boldsymbol{v})_{L^{2}(\Omega)^{2}}+b(\boldsymbol{h}, \boldsymbol{v}) \quad \forall \boldsymbol{v} \in V
$$

where

$$
\begin{array}{ll}
a(\boldsymbol{u}, \boldsymbol{v}) & :=a_{1}(\boldsymbol{u}, \boldsymbol{v})+a_{2}(\boldsymbol{u}, \boldsymbol{u}, \boldsymbol{v})+a_{3}(\boldsymbol{u}, \boldsymbol{u}, \boldsymbol{v}) \\
a_{1}(\boldsymbol{u}, \boldsymbol{v}) & :=\nu \int_{\Omega} \sum_{i, j=1}^{2} \frac{\partial u_{i}}{\partial x_{j}} \frac{\partial v_{i}}{\partial x_{j}} \mathrm{~d} \boldsymbol{x} \\
a_{2}(\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}) & :=\int_{\Omega} \sum_{i, j=1}^{2} u_{j} \frac{\partial v_{i}}{\partial x_{j}} w_{i} \mathrm{~d} \boldsymbol{x} \\
a_{3}(\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}) & :=\int_{\Gamma_{o}} \frac{1}{2}(\boldsymbol{u} \cdot \boldsymbol{n})^{-} \boldsymbol{v} \cdot \boldsymbol{w} \mathrm{d} S \\
b(\boldsymbol{h}, \boldsymbol{v}) & :=-\int_{\Gamma_{o}} \boldsymbol{h} \cdot \boldsymbol{v} \mathrm{~d} S
\end{array}
$$

The definition of the weak solution is formally identical with Definition 1, we only use form a in the form given on the preceding page.

Definition 2. Let $\boldsymbol{g} \in H^{s}\left(\Gamma_{i}\right)^{2}$ (for some $s \in\left(\frac{1}{2}, 1\right]$) satisfy the condition $\boldsymbol{g}\left(A_{1}\right)=\boldsymbol{g}\left(A_{0}\right)$. Let $\boldsymbol{f} \in L^{2}(\Omega)^{2}$ and $\boldsymbol{h} \in L^{2}\left(\Gamma_{o}\right)^{2}$. The weak solution of the problem (14), (15), (3)-(7), (16) is a vector function $\boldsymbol{u} \in H^{1}(\Omega)^{2}$ which satisfies the identity

$$
\begin{equation*}
a(\boldsymbol{u}, \boldsymbol{v})=(\boldsymbol{f}, \boldsymbol{v})_{0}+b(\boldsymbol{h}, \boldsymbol{v}) \tag{17}
\end{equation*}
$$

for all test functions $\boldsymbol{v} \in V$, the equation of continuity (15) a.e. in Ω and the boundary conditions (3)-(7) (on $\Gamma_{i}, \Gamma_{w}, \Gamma_{-}$and Γ_{+}) in the sense of traces.

Theorem (on the existence of a weak solution). There exists $\varepsilon>0$ such that if $\|\boldsymbol{g}\|_{s ; \Gamma_{i}}<\varepsilon$ then there exists a solution \boldsymbol{u} of the problem defined in Definition 2.

Theorem (on the uniqueness of a weak solution). There exists $R>0$ such that if \boldsymbol{u}_{1} and \boldsymbol{u}_{2} are two solutions of the problem from Definition 2 such that $\left\|\nabla \boldsymbol{u}_{1}\right\|_{L^{2}(\Omega)^{4}} \leq R$ and $\left\|\nabla \boldsymbol{u}_{2}\right\|_{L^{2}(\Omega)^{4}} \leq R$ then $\boldsymbol{u}_{1}=\boldsymbol{u}_{2}$.

Principle of the proof.

$$
\begin{aligned}
& a\left(\boldsymbol{u}_{1}, \boldsymbol{v}\right)-a\left(\boldsymbol{u}_{2}, \boldsymbol{v}\right)=0 . \\
& a_{1}\left(\boldsymbol{u}_{1}-\boldsymbol{u}_{2}, \boldsymbol{u}_{1}-\boldsymbol{u}_{2}\right)=\nu\left|\left\|\boldsymbol{u}_{1}-\boldsymbol{u}_{2} \mid\right\|^{2}\right. \\
& \left|a_{2}\left(\boldsymbol{u}_{1}, \boldsymbol{u}_{1}, \boldsymbol{u}_{1}-\boldsymbol{u}_{2}\right)-a_{2}\left(\boldsymbol{u}_{2}, \boldsymbol{u}_{2}, \boldsymbol{u}_{1}-\boldsymbol{u}_{2}\right)\right| \leq c_{7} R\| \| \boldsymbol{u}_{1}-\boldsymbol{u}_{2} \|^{2} \\
& \left|a_{3}\left(\boldsymbol{u}_{1}, \boldsymbol{u}_{1}, \boldsymbol{u}_{1}-\boldsymbol{u}_{2}\right)-a_{3}\left(\boldsymbol{u}_{2}, \boldsymbol{u}_{2}, \boldsymbol{u}_{1}-\boldsymbol{u}_{2}\right)\right| \leq c_{8} R\| \| \boldsymbol{u}_{1}-\boldsymbol{u}_{2} \|^{2} \\
& \quad \nu\left\|\boldsymbol{u}_{1}-\boldsymbol{u}_{2}\right\|\left\|^{2} \leq c_{7}+c_{8} R\right\| \boldsymbol{u}_{1}-\boldsymbol{u}_{2} \|^{2} .
\end{aligned}
$$

The derivation of the estimate for a_{3} is technically more complicated.

