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Abstract 
The box method is one of mathematical methods used to numerical solutions of 
thermal conduction. This article focuses its attention on a use of the box method for 
solution of certain type of partial differential equation. We consider heat conduction 
problem described by elliptic partial differential equation of second order with the 
Newton boundary conditions on rectangular domain. The article contains description 
of numerical solution procedure of heat problem and estimation of box method error. 
The solution of practical problem is presented as well. 

1.  Introduction 
This paper deals with heat stationary conduction problem. Our objective is to solve classical 
formulation of the problem 
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in a rectangular domain ⊂Ω R2  with Newton’s boundary condition 
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Derivative with respect conormal in (2) is defined by relation  
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and  ),( 21 nnn =  denotes unit outward normal to ∂Ω .  Unknown function  u  denotes 

warming of material and we suppose ( )Ω∈ 2Cu ,  functions ( )Ω∈ 1
2211 ,,, Cfcaa  and 

( )Ω∂∈Cg,α ,  0)( ≥sα  on Ω∂ . The coefficients 11a  and  22a  describe the heat conduction 
character of the physical medium.  
We will describe numerical solution procedure of heat conduction problem model by box 
method and error estimation of this method in following paragraphs. 

2.  Use of box method 
We construct triangulation τ  on closure of rectangular Ω   ( 221211 , YxYXxX ≤≤≤≤ ) by 
similar way as we use finite element method. We construct regular rectangular mesh with 

increments  
p
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=   in the x1-axis and x2-axis direction, 

respectively, where  p  and  q  denotes the number of segments, to which  the region is divided 



in the x1-axis and x2-axis direction, respectively. The general node point has coordinates 
],[ 2111 shYrhXVrs ++= , where }...,,1,0{ pr ∈ ,  }...,,1,0{ qs∈ . The rectangles with 

vertexes defined in points of mesh created elements of triangulation  τ . We construct special 
case of dual mesh to triangulation τ  published in [4], p. 215.  Points ,41, ≤≤ iTi  are 

midpoints of abscissas defined by mesh point rsV  and adjacent mesh points. Then points  

,41, ≤≤ iSi  are intersection points of mentioned abscissas. The rectangle belongs to node   

rsV  and given by vertexes 321 ,, SSS  and  4S  created element rsb  of dual mesh to τ (see 

Figure 1). 
 

 
Figure 1 – Element  brs  of dual mesh belongs to node rsV  

 
If the node  rsV  lies on the boundary of  Ω  , the element rsb  is by corresponding way 

modified (see Figure 2 and Figure 3). 
 

 
Figure 2 – Element rqb  of dual mesh belongs to boundary node  rqV  

 



 
 

Figure 3 – Element pqb  of dual mesh belongs to “corner” boundary node  pqV  

 

The elements brs are characterized by two aspects: Ω rs
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We can transfer member  uc   to the right hand side in equation (1) and integrate left and right 

hand side over element  rsb  .We then get  
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Using now Green’s formula on left hand of relation (4), we find that 
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Then relation (4) can be modified in the form of 
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The left hand side of equations (6) describes the quantity of heat supplied from or delivered  
to boundary of element  rsb ,  the right hand side express waste heat arising in the element rsb . 

Because element  rsb   is  rectangle, in case of internal element we can make an approximation   
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With respect to supposed smooth of function u,  we make the )( 2
1hO -order error mistake in 

approximation (6). Similar approximations are possible to carry out for points 32 , TT  and 4T . 

 
We focus now on boundary element , for example element  rqb  in Figure 2.  Using relation (2) 

and (3) we obtain  
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In case of boundary “corner” element (see Figure 3), we can make an approximation of the 
value )( 3Pu from values )( 1qpVu −  and  )( pqVu with using Lagrange’s interpolation polynomial 

of first degree. Because we suppose )(2 Ω∈Cu , error order of approximation is )( 2
1hO (see 

[3], p.64) and the value 23
2
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 is possible to approximate through the use of 

relation (2) . 
 
Now we target the approximation of integrals in relation (5). However, first we introduce 
auxiliary thesis. 
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where  >∈< ba,, 21 ηη  and generally  21 ηη ≠ . 
Hence we obtain 
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Let us set ),max( 21 hhh = .  From lemma implied, error of the midpoint rule applications to 

approximation of integrals in equation (5) is )( 2hO  order for every internal element. In 
boundary elements, we use midpoint rule and rectangle rule too. Analogously it is possible to 
prove that error of the rectangle rule is in this case )( 2hO  (see [1], p.178). 

By application of the above mentioned approximations for every element rsb  we obtain 

system of linear algebraic equations. Approximation error is order )( 2hO .  
The general questions of box method estimation error are solved in [2]. 

3.  Practical numerical example 
We will solve now a real-live technical problem finding the warming in aluminium oil 
transformer screening by using above mentioned box method. Transformer screening is 
considered in the form of a thin-walled cylinder and the temperature field is supposed to be 
rotationally symmetric. Hence the warming problem can be solved in screening cross section 
on two dimensional closed rectangular domain Ω .  Then the  problem  is defined by equation  
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with the Newton boundary condition 
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on rectangular Ω . Here solution u denotes screening warming, real values1λ  and 2λ  stand for 

heat conductivities of the material in the 1x -axis and 2x -axis directions, respectively; 

)( 2xδ denotes the density of eddy currents, ρ is the specific resistance of the material, and Tα  
is the factor for the dependence of a specific resistance on temperature. In boundary condition 
(8) the constant  α  means heat transfer coefficient on the boundary of domain, real constant k  
allows to express the variable temperature of oil in the vicinity of screening in the 2x -axis 
direction. The problem has the following parameters: 

86.01 =X  m, 868.02 =X  m, 8864.01 =Y m, =2Y 2.51 m, 22021 == λλ W/mK, 

Ω×= −7103.0ρ m,  00409.0=Tα K-1, 50=α W/m2K, 10=k K/m, the current density 

)( 2xδ is given by means of 19 values between 0.2498510× Am-2 and 0.3508 710×  Am-2, the 
current density at the other node points is computed by means of linear interpolation. Table 1 
lists approximate values of warming in chosen nodes computed using the box method. 
 

2x [m] 860,01 =X [m] 864,01 =x [m] 868,02 =X [m] 

Y2 = 2,51 29,444 29,446 29,444 
2,30705 24,423 24,423 24,423 
2,10410 22,133 22,133 22,133 
1,90115 20,682 20,682 20,682 
1,69820 19,466 19,467 19,466 
1,49525 18,569 18,571 18,569 
1,29230 17,567 17,569 17,567 
1,08935 15,535 15,537 15,535 

Y1 = 0,8864 12,809 12,811 12,809 
 
Table 1: The values of screening warming in K for selected nodes at 004.01 =h m and   

              025369.02 =h m. 
 

References 
[1] Antia, H., M.: Numerical Methods for Scientists and Engineers. Birkhauser Verlag, 

Berlin, 2000. 
 
[2] Bank, R., E., Rose, D., J.: Some error estimates for the box method. SIAM J. Numer.  

Anal. 24 (1987), 777-787. 
 
[3] Ralston, A.: Základy numerické matematiky. Academia, Praha, 1987. 
 
[4] Varga, R., S.: Matrix Iterative Analysis. Springer Verlag, Berlin, 2000. 


