PANM 14, Dolní Maxov, 1. – 6. června 2008

1

Modelování rezonančních vlastností kulového tlumiče

Jiří Náprstek, Cyril Fischer

Institute of Theoretical and Applied Mechanics, v.v.i. Academy of Sciences of the Czech Republic, 190 00 Praha 9, Prosecká 76

OSNOVA

1. ÚVOD

2. MATEMATICKÝ MODEL

2.1. Sférická a Cartézská verze základní diferenciální soustavy

3. SEMI-TRIVIÁLNÍ ŘEŠENÍ VE VERTIKÁLNÍ ROVINĚ

3.1. Semi-triviální řešení

3.2. Analýza stability

3.3. Vztah rezonančních křivek a hranic stability

4. POST-KRITICKÁ ODEZVA V REZONANČNÍ OBLASTI

4.1. Simulace

4.2. Stacionární řešení v rezonanční oblasti – limitní cykly

5. NUMERICKÝ VÝPOČET REZONANČNÍ KŘIVKY 6. ZÁVĚR

1. ÚVOD — MOTIVACE

Motivační obrázek: Taipei 101, Taiwan. Současný nejvyšší mrakodrap (508 m) užívá jako tlumič kmitů kyvadlo, které váží 700 000kg

Existují však i konstrukce, které tlumič nemají a kde by docela hodil – a nemusíme chodit daleko

2. MATEMATICKÝ MODEL

2.1. Sférická a Cartézská verze základní diferenciální soustavy

Semi-triviální řešení a jeho porucha se nedá formulovat v proměnných $\theta(t), \varphi(t).$

Soustavu je třeba popsat přibližně v souřadnicích $\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}$

s jednou vedlejší geometrickou podmínkou

Složky pohybu $\xi(t),\zeta(t)$ odpovídají souřadnicímx,y.

konzervativní část absorbce a disipace energie

Kinetická energie:

$$T = \frac{m}{2} \left[\dot{\xi}^2 + \dot{\zeta}^2 + \frac{1}{4r^2} \left(\xi^2 + \zeta^2 \right)^2 \left(1 + \frac{\xi^2 + \zeta^2}{2r^2} \right)^2 + 2\dot{u}\dot{\xi} + \dot{u}^2 \right];$$

kde: (...)' = $\frac{\mathbf{d}}{\mathbf{d}t}$ (...).

Potenciální energie:

$$1 - \cos \theta \approx \frac{1}{2}\theta^2 - \frac{1}{24}\theta^4 \quad \Rightarrow \quad V = mg \left[\frac{1}{2r} (\xi^2 + \zeta^2) + \frac{1}{8r^3} (\xi^2 + \zeta^2)^2 \right]$$

Přibližná Lagrangeova soustava ve složkách ξ, ζ — v Cartézské soustavě: $O(\varepsilon^6); \ \varepsilon^2 = (\xi^2 + \zeta^2)/r^2:$

$$\ddot{\xi} + \frac{1}{2r^2}\xi(\xi^2 + \zeta^2) + 2\omega_b\dot{\xi} + \frac{g}{r}(\xi + \frac{1}{2r^2}\xi(\xi^2 + \zeta^2)) = -\ddot{a}$$
$$\ddot{\zeta} + \frac{1}{2r^2}\zeta(\xi^2 + \zeta^2) + 2\omega_b\dot{\zeta} + \frac{g}{r}(\zeta + \frac{1}{2r^2}\zeta(\xi^2 + \zeta^2)) = 0$$

 ω_b - relativní měřítko viskozního útlumu.

3. SEMI-TRIVIÁLNÍ ŘEŠENÍ VE VERTIKÁLNÍ ROVIŅĚ

3.1. Semi-triviální řešení

Předpokládáme

- harmonické buzení (pravá strana): $a(t) = a_0 \sin \omega t$
- pohyb ve vertikální rovině: $\zeta_0 = 0$
- obecný tvar řešení: $\xi_0 = \xi_c \cos \omega t + \xi_s \sin \omega t$

Koeficienty ξ_c, ξ_s jsou obecně funkce času:

(a) **Stacionární řešení:** ξ_c , ξ_s konvergují ke konstantám;

(b) Obecný případ: řešení je nestacionární, amplitudy mohou sledovat periodické i neperiodické křivky.

Soustava se redukuje na rovnici

$$\ddot{\xi}(1+\frac{\xi^2}{r^2}) + \frac{1}{r^2}\xi\dot{\xi}^2 + \frac{1}{2}\omega_b\dot{\xi} + \omega_0^2\xi(1+\frac{1}{2r^2}\xi^2) - a_0\omega^2\sin\omega t = 0$$

Stacionární stav (metoda harmonické rovnováhy):

$$\xi_{c} \left((\omega_{0}^{2} - \omega^{2}) + \frac{1}{2r^{2}} \left(\frac{3}{4} \omega_{0}^{2} - \omega^{2} \right) (\xi_{c}^{2} + \xi_{s}^{2}) \right) + \frac{1}{2} \omega \omega_{b} \cdot \xi_{s} = 0$$

$$\xi_{s} \left((\omega_{0}^{2} - \omega^{2}) + \frac{1}{2r^{2}} \left(\frac{3}{4} \omega_{0}^{2} - \omega^{2} \right) (\xi_{c}^{2} + \xi_{s}^{2}) \right) - \frac{1}{2} \omega \omega_{b} \cdot \xi_{c} = a_{0} \cdot \omega^{2}$$

Rovnice pro amplitudu $R_0^2 = \xi_c^2 + \xi_s^2$:

$$R_0^2 \left| \omega^2 \omega_b^2 + 4 \left(\left(\omega_0^2 - \omega^2 \right) + rac{1}{2r^2} \left(rac{3}{4} \omega_0^2 - \omega^2
ight) R_0^2
ight)^2
ight| - 4 \omega^4 a_0^2 \; = \; 0 \; ,$$

— tzv. **rezonanční křivka**

Rezonanční křivky jakožto semi-triviální řešení;(a) pevná amplituda buzení, proměnný útlum; (b) pevný útlum, proměnná amplituda buzení.

3.2. Analýza stability

Rozšíříme semitriviální řešení o lineární poruchu v obou souřadnicích:

$$\begin{aligned} \xi &= \xi_0 + u \quad (u = u(t)) , \quad (a) \\ \zeta &= 0 + v \quad (v = v(t)) . \quad (b) \end{aligned}$$

kde
$$u(t) &= u_c \cos \omega t + u_s \sin \omega t , \\ v(t) &= v_c \cos \omega t + v_s \sin \omega t . \end{aligned}$$

"Linneární" a "malá" porucha ... zachovají se první mocniny u, v a jejich derivací.

Harmonická rovnováha; dvě lineární algebraické soustavy pro u_c, u_s and v_c, v_s :

$$\left[\left(\omega_0^2 - \omega^2\right) + \frac{1}{2r^2} \left(\frac{3}{4}\omega_0^2 - \omega^2\right) \left(3\xi_c^2 + \xi_s^2\right) \right] u_c + \left[\frac{1}{2}\omega\omega_b + \frac{1}{r^2} \left(\frac{3}{4}\omega_0^2 - \omega^2\right)\xi_c\xi_s \right] u_s = 0,$$

$$\left[\frac{1}{r^2} \left(\frac{3}{4}\omega_0^2 - \omega^2\right)\xi_c\xi_s - \frac{1}{2}\omega\omega_b \right] u_c + \left[\left(\omega_0^2 - \omega^2\right) + \frac{1}{2r^2} \left(\frac{3}{4}\omega_0^2 - \omega^2\right) \left(\xi_c^2 + 3\xi_s^2\right) \right] u_s = 0,$$

$$\left[\left(\omega_0^2 - \omega^2\right) + \frac{1}{2r^2} \left(\frac{3}{4}\omega_0^2 - \omega^2\right) \xi_c^2 + \frac{1}{2r^2} \left(\frac{1}{4}\omega_0^2 + \omega^2\right) \xi_s^2 \right] v_c + \left[\frac{1}{r^2} \left(\frac{1}{4}\omega_0^2 - \omega^2\right) \xi_c \xi_s + \frac{1}{2}\omega\omega_b \right] v_s = 0,$$

$$\left[\frac{1}{r^2} \left(\frac{1}{4}\omega_0^2 - \omega^2\right) \xi_c \xi_s - \frac{1}{2}\omega\omega_b \right] v_c + \left[\left(\omega_0^2 - \omega^2\right) + \frac{1}{2r^2} \left(\frac{3}{4}\omega_0^2 - \omega^2\right) \xi_s^2 + \frac{1}{2r^2} \left(\frac{1}{4}\omega_0^2 + \omega^2\right) \xi_c^2 \right] v_s = 0.$$

hranice stability :

$$\begin{aligned} \zeta : \quad R_v^2 \frac{1}{2r^2} \left(\frac{3}{4} \omega_0^2 - \omega^2 \right) \left(3R_v^2 \frac{1}{2r^2} \left(\frac{3}{4} \omega_0^2 - \omega^2 \right) + 4(\omega_0^2 - \omega^2) \right) + (\omega_0^2 - \omega^2)^2 + \frac{1}{4} \omega^2 \omega_b^2 = 0 \\ \xi : \quad R_u^2 \left(\frac{\omega_0^2}{2r^2} (\omega_0^2 - \omega^2) + R_u^2 \frac{1}{4r^4} \left(\frac{3}{4} \omega_0^2 - \omega^2 \right) \left(\frac{1}{4} \omega_0^2 + \omega^2 \right) \right) + (\omega_0^2 - \omega^2)^2 + \frac{1}{4} \omega^2 \omega_b^2 = 0 \end{aligned}$$

Hranice stability semi-triviálního řešení: (a) kolmo k rovině (xz) - hranice stability ζ ; (b) v rovině (xz) - hranice stability ξ .

11

video

4. POST-KRITICKÁ ODEZVA V REZONANČNÍ OBLASTI

4.1. Simulace - numerický výpočet

- Fourierova transformace numerického řešení ukazuje, že řešení obsahuje pouze frekvenci odpovídající frekvenci buzení ω v celé rezonanční oblasti.
- Podle obrázku (e) je možné očekávat stacionární řešení i v rezonanční oblasti.

Uvažujme obecnější tvar řešení:

$$\begin{aligned} \xi(t) &= a_c(t) \cos \omega t + a_s(t) \sin \omega t \\ \zeta(t) &= b_c(t) \cos \omega t + b_s(t) \sin \omega t \end{aligned}$$

pro 4 neznámé a_c, a_s, b_c, b_s namísto 2 ξ, ζ můžeme definovat 2 další podmínky:

$$\dot{\xi}(t) = -a_c \omega \sin \omega t + a_s \omega \cos \omega t$$
$$\dot{\zeta}(t) = -b_c \omega \sin \omega t + b_s \omega \cos \omega t$$

kde
$$a_c = a_c(t), a_s = a_s(t), b_c = b_c(t), b_s = b_s(t).$$

Diferenciální soustava pro amplitudy $a_c = a_c(t), a_s = a_s(t), b_c = b_c(t), b_s = b_s(t)$:

$$\omega \begin{bmatrix} -2a_ca_s, & 4r^2 + 3a_c^2 + a_s^2, & -a_sb_c - a_cb_s, & 3a_cb_c + a_sb_s \\ -4r^2 - a_c^2 - 3a_s^2, & 2a_ca_s, & -a_cb_c - 3a_sb_s, & a_sb_c + a_cb_s \\ -a_sb_c - a_cb_s, & 3a_cb_c + a_sb_s, & -2b_cb_s, & 4r^2 + 3b_c^2 + b_s^2 \\ -a_cb_c - 3a_sb_s, & a_sb_c + a_cb_s, & -4r^2 - b_c^2 - 3b_s^2, & 2b_cb_s \end{bmatrix} \begin{bmatrix} \dot{a}_c \\ \dot{a}_s \\ \dot{b}_c \\ \dot{b}_s \end{bmatrix} =$$

$$= -\frac{1}{2} \left[\begin{array}{c} a_c \left(8\Omega_2 r^2 + (a_c^2 + a_s^2 + b_c^2) \,\Omega_1 + b_s^2 \Omega_3 \right) + 2a_s \left(2\beta\omega r^2 + b_c b_s \Omega_4 \right) \\ 8\omega^2 a_0 r^2 + a_s \left(8\Omega_2 r^2 + (a_c^2 + a_s^2 + b_s^2) \,\Omega_1 + b_c^2 \Omega_3 \right) - 2a_c \left(2\beta\omega r^2 - b_c b_s \Omega_4 \right) \\ b_c \left(8\Omega_2 r^2 + (a_c^2 + b_c^2 + b_s^2) \,\Omega_1 + a_s^2 \Omega_3 \right) + 2b_s \left(2\beta\omega r^2 + a_c a_s \Omega_4 \right) \\ b_s \left(8\Omega_2 r^2 + (a_s^2 + b_c^2 + b_s^2) \,\Omega_1 + a_c^2 \Omega_3 \right) - 2b_c \left(2\beta\omega r^2 - a_c a_s \Omega_4 \right) \end{array} \right] ,$$

označení:

$$\Omega_1 = 3\omega_0^2 - 4\omega^2$$
, $\Omega_2 = \omega_0^2 - \omega^2$, $\Omega_3 = \omega_0^2 + 4\omega^2$, $\Omega_4 = \omega_0^2 - 4\omega^2$.

budeme řešit numericky

Numerický výpočet amplitud v rezonanční oblasti

4.2. Stacionární řešení v rezonanční oblasti - limitní cykly

 $\lim_{t \to \infty} a_c, a_s, b_c, b_s = \text{const.} \Rightarrow \lim_{t \to \infty} \dot{a}_c, \dot{a}_s, \dot{b}_c, \dot{b}_s = 0$ tzn. pravá strana výše uvedené soustavy musí být nulová:

$$\begin{array}{rcl} a_c \cdot (8\Omega_2 r^2 + R_A^2 \Omega_1) &+& 2b_s S_A^2 \Omega_4 &+& 4a_s \omega_b \omega r^2 &=& 0 \\ a_s \cdot (8\Omega_2 r^2 + R_A^2 \Omega_1) &-& 2b_c S_A^2 \Omega_4 &-& 4a_c \omega_b \omega r^2 &=& -8\omega^2 a_0 r^2 \\ b_c \cdot (8\Omega_2 r^2 + R_A^2 \Omega_1) &-& 2a_s S_A^2 \Omega_4 &+& 4b_s \omega_b \omega r^2 &=& 0 \\ b_s \cdot (8\Omega_2 r^2 + R_A^2 \Omega_1) &+& 2a_c S_A^2 \Omega_4 &-& 4b_c \omega_b \omega r^2 &=& 0 \\ R_A^2 &=& a_c^2 + a_s^2 + b_c^2 + b_s^2 &>& 0 \ ; & S_A^2 &=& a_s b_c - a_c b_s \\ R_A^2 & \dots \text{``(zobecněná) amplituda''}, S_A^2 &\dots \text{``(zobecněná) fáze''} \end{array}$$

$$\begin{array}{rcl} R_A^2 \cdot \left[(8\Omega_2 r^2 + R_A^2 \Omega_1)^2 + 4S_A^4 \Omega_4^2 + 16\omega_b^2 \omega^2 r^4 \right] - \\ & -8S_A^4 (8\Omega_2 r^2 + R_A^2 \Omega_1) \Omega_4 &= 64\omega^4 a_o^2 r^4 \\ S_A^2 \cdot \left[2R_A^2 (8\Omega_2 r^2 + R_A^2 \Omega_1) \omega_4 - \\ & -(8\Omega_2 r^2 + R_A^2 \Omega_1)^2 - 16\omega_b^2 \omega^2 r^4 - 4S_A^4 \Omega_4^2 \right] &= 0 \end{array}$$

- (i) $S_A^2 = 0$ buď jsou vektory $[a_c, a_s], [b_c, b_s]$ kolineární $\Rightarrow \xi(t)/\zeta(t) = const$ anebo $\zeta = 0$
- (ii) $S_A^2 \neq 0$

 $(8\Omega_2 r^2 + R_A^2 \Omega_1)[(R_A^2 \omega_o^2 + 4\Omega_2 r^2)^2 + 4\omega_b^2 \omega^2 r^4] = 8\Omega_4 \omega^4 a_o^2 r^4$

PANM 14, Dolní Maxov, 1.-6. června 2008

4.3. Shrnutí

lineární rezonanční křivka limit stability ξ limit stability ζ "amplituda" limitního cyklu "fáze" limitního cyklu amplituda $\sqrt{\xi^2 + \zeta^2}$ numericky amplituda ξ numericky

5. Numerické počítání "rezonančních" křivek

amplituda

amplituda $\sqrt{\xi^2 + \zeta^2}$ numericky amplituda ζ numericky amplituda ξ numericky

Rezonanční křivka:

- Klasický výpočet: řešení rovnice pro jednotlivé frekvence pravé strany.

- Každý zobrazený bod je maximum řešení ustáleného na nějakém intervalu.

- Pro nestacionární řešení (žlutá oblast) rezonanční křivka nemá smysl.

— Klasický výpočet je pomalý. Jak urychlit?

Rezonanční křivka Duffingovy rovnice

6. ZÁVĚR

- 1. Efektivita kyvadla jako dynamického tlumiče kmitání je silně závislá na existenci semitriviálního řešení. Z toho důvodu se zkoumala stabilita pohybu kyvadla ve svislé rovině xz.
- 2. Existují dva typy ztráty stability pohybu vzhledem ke svislé rovině: ζ stabilita pohyb kolmo k rovině (xz); ξ stabilita pohyb v rovině (xz).
- **3.** Při projíždění rezonanční oblastí se potkáme s ledasčím: řešení má charakter semitriviální, deterministický stacionární i nestacionární, kvazi-periodický, chaotický.
- **4.** Projíždíme-li rezonanční oblasti, narazíme na dva typy limitních cyklů (stacionární řešení).
- **5.** Poměr amplitudy buzení a faktoru útlumu by neměl přesáhnout jistou hranici, aby se zabránilo vzniku prostorového pohybu a tím se zajistila dokonalá funkce tlumiče.