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1. The unconstrained problem
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Introduction

Consider a general unconstrained problem

min F (x), x ∈ Rn,

where F : Rn → R is a twice continuously differentiable objective
function bounded from below. Basic optimization methods (line-search
and trust-region methods) generate points xi ∈ Rn, i ∈ N , in such a way
that x1 is arbitrary and

xi+1 = xi + αidi, i ∈ N ,

where di ∈ Rn are direction vectors and αi > 0 are step-sizes.

Advantages of trust-region methods – Hessian matrix (or its
approximation) of F is indefinite, ill-conditioned or singular.

It often arises in connection with the
● Newton’s method for general objective function (indefiniteness);
● Gauss-Newton’s method for nonlinear LS problems (near singularity).
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Notation

For a description of trust-region methods we define the quadratic function

Qi(d) =
1

2
dT Bid + gT

i d

which locally approximates the difference F (xi + d) − F (xi), the vector

ωi(d) =
(Bid + gi)

‖gi‖

for the accuracy of a computed direction, and the number

ρi(d) =
F (xi + d) − F (xi)

Qi(d)

for the ratio of actual and predicted decrease of the objective function.
Here gi = g(xi) = ∇F (xi) and Bi ≈ ∇2F (xi) at the point xi ∈ Rn.

Trust-region methods are based on approximate minimizations of Qi(d) on
the balls ‖d‖ ≤ ∆i followed by updates of radii ∆i > 0.
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Definition of TR methods

Direction vectors di ∈ Rn are chosen to satisfy the conditions

‖di‖ ≤ ∆i,(1)

‖di‖ < ∆i ⇒ ‖ωi(di)‖ ≤ ω,(2)

−Qi(di) ≥ σ‖gi‖min(‖di‖, ‖gi‖/‖Bi‖),(3)

where 0 ≤ ω < 1 and 0 < σ < 1. Step-sizes αi ≥ 0 are selected so that

ρi(di) ≤ 0 ⇒ αi = 0,

ρi(di) > 0 ⇒ αi = 1.

Trust-region radii 0 < ∆i ≤ ∆ are chosen in such a way that
0 < ∆1 ≤ ∆ is arbitrary and

ρi(di) < ρ ⇒ β‖di‖ ≤ ∆i+1 ≤ β‖di‖,

ρi(di) ≥ ρ ⇒ ∆i ≤ ∆i+1 ≤ ∆,

where 0 < β ≤ β < 1 and 0 < ρ < 1.
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Maximum step-length ∆

The use of the maximum step-length ∆ has no theoretical significance but
is very useful for practical computations:

● The problem functions can sometimes be evaluated only in a relatively
small region (if they contain exponentials) so that the maximum
step-length is necessary.

● The problem can be very ill-conditioned far from the solution point, thus
large steps are unsuitable.

● If the problem has more local solutions, a suitably chosen maximum
step-length can cause a local solution with a lower value of F to be
reached.

Therefore, the maximum step-length ∆ is a parameter which is most
frequently tuned.
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Global convergence

The following theorem establishes the global convergence of TR methods.

Let the objective function F : Rn → R be bounded from below and have
bounded second-order derivatives. Consider the trust-region method and
denote Mi = max(‖B1‖, . . . , ‖Bi‖), i ∈ N . If

∑

i∈N

1

Mi

= ∞,(4)

then lim infi→∞ ‖gi‖ = 0.

Note that (4) is satisfied if there exist a constant B and an infinite set
M ⊂ N such that ‖Bi‖ ≤ B ∀i ∈ M.
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Crucial part

A crucial part of each trust-region method is a direction determination.
There are various commonly known methods for computing direction
vectors satisfying conditions (1)-(3).

How to compute di ?

To simplify the notation, the major index i is omitted and j denotes the
inside iteration index for computing di.
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2. Computation of direction vectors
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Moré-Sorensen 1983

The most sophisticated method is based on a computation of the optimal
locally constrained step. In this case, the vector d ∈ Rn is obtained by
solving the subproblem

min Q(d) =
1

2
dT Bd + gT d subject to ‖d‖ ≤ ∆.

Necessary and sufficient conditions for this solution are

‖d‖ ≤ ∆, (B + λI)d = −g, B + λI � 0, λ ≥ 0, λ(∆ − ‖d‖) = 0,

where λ is a Lagrange multiplier. The MS method is based on solving the
nonlinear equation

1

‖d(λ)‖
=

1

∆
with (B + λI)d(λ) + g = 0

by the Newton’s method using the Choleski decomposition of B + λI and
gives the optimal Lagrange multiplier λ ≥ 0.
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Powell 1970, Dennis-Mei 1975

Simpler methods are based on minimization of Q(d) on the
two-dimensional subspace containing the Cauchy and Newton steps

dC = −
gT g

gT Bg
g, dN = −B−1g.

The most popular is the dogleg method where

d = dN if ‖dN‖ ≤ ∆

and
d = (∆/‖dC‖) dC if ‖dC‖ ≥ ∆.

In the remaining case, d is a combination of dC and dN such that
‖d‖ = ∆. This method requires only one Choleski decomposition of
matrix B for one direction determination instead of 2-3 Choleski
decompositions on the average in the MS method.
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Steihaug 1983, Toint 1981

This method is based on the conjugate gradient method applied to the
linear system

Bd + g = 0,

computes only an approximate solution, and uses the fact that

Q(dj+1) < Q(dj) and ‖dj+1‖ > ‖dj‖

hold in the subsequent CG iterations if the CG coefficients are positive
and no preconditioning is used.

We obtain:
● either an unconstrained solution with a sufficient precision (the norm of

residuum is small)
● or stop on the trust-region boundary if

❋ either negative curvature is encountered
❋ or the constraint is violated
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Preconditioning

For SPD preconditioner C we have

‖dj+1‖C > ‖dj‖C with ‖dj‖
2
C = dT

j Cdj .
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Preconditioned Steihaug-Toint

There are two possibilities how the Steihaug-Toint method can be
preconditioned:

1. To use the norms ‖di‖Ci
(instead of ‖di‖), where Ci are

preconditioners chosen. This possibility is not always efficient because
the norms ‖di‖Ci

, i ∈ N , vary considerably in the major iterations
and the preconditioners Ci, i ∈ N , can be ill-conditioned.

2. To use the Euclidean norms even if arbitrary preconditioners
Ci, i ∈ N , are used. In this case, the trust-region can be leaved
prematurely and the direction vector obtained can be farther from the
optimal locally constrained step than that obtained without
preconditioning. This shortcoming is usually compensated by the rapid
convergence of the preconditioned CG method.

Our computational experiments indicate that the second way is more
efficient in general.
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Multiple dogleg

The CG steps can be combined with the Newton step dN = −B−1g in
the multiple dogleg method.

Let j ≪ n and dj be a vector obtained after j CG steps of the
Steihaug-Toint method (usually j = 5). If ‖dj‖ < ∆, we use dk instead of
dC = d1 in the dogleg method.
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Gould-Lucidi-Roma-Toint 1997

This method solves the quadratic subproblem iteratively by using the
symmetric Lanczos process. A vector dj which is the j−th approximation
of d is contained in the Krylov subspace

Kj = span{g, Bg, . . . , Bj−1g}

of dimension j defined by the matrix B and the vector g (usually j ≤ 100).

In this case, dj = Zd̃j , where d̃j is obtained by solving the
j−dimensional subproblem

min
1

2
d̃T T d̃ + ‖g‖eT

1 d̃ subject to ‖d̃‖ ≤ ∆.

Here T = ZT BZ (with ZT Z = I) is the Lanczos tridiagonal matrix and
e1 is the first column of the unit matrix.

Using a preconditioner C, the preconditioned Lanczos method generates
basis such that ZT CZ = I. Thus we have to use the norms ‖di‖Ci

, i.e.,
the inefficient first way of preconditioning.
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Hager 2001

There are several techniques for large scale TR subproblems that are not
based on conjugate gradients. This method solves

min Q(d) =
1

2
dT Bd + gT d subject to ‖d‖ ≤ ∆(5)

with the additional constraint that d is contained in a low-dimensional
subspace. They are modified in successive iterations to obtain quadratic
convergence to the optimum. We seek vectors d ∈ S where S contains:

● The previous iterate. This causes that the value of the objective
function can only decrease in consecutive iterations.

● The vector Bd + g. It ensures descent if the current iterate does not
satisfy the first-order optimality conditions.

● An estimate for an eigenvector of B ass. with the smallest eigenvalue.
It will dislodge the iterates from a nonoptimal stationary point.

● The SQP iterate. The convergence is locally quadratic if S contains the
iterate generated by one step of the SQP algorithm applied to (5).
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SQP method

The SQP method is equivalent to the Newton’s method applied to the
nonlinear system

(B + λI)d + g = 0,
1

2
dT d −

1

2
∆2 = 0.

The Newton iterate can be expressed in the following way:

dSQP = d + z, λSQP = λ + ν,

where z and ν are solutions of the linear system

(B + λI)z + d ν = −
(

(B + λI)d + g
)

,

dT z = 0,

which can be solved by preconditioned MINRES or CG methods. The
latter case with the incomplete Choleski-type decomposition of the matrix
B + λI has shown to be more efficient in practice.
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Rojas-Santos-Sorensen 1997, 2000

Another approach for finding the direction vector d is based on the idea of
Sorensen. Consider the bordered matrix

Bα =

(

α gT

g B

)

where α is a real number and observe that

α

2
+ Q(d) =

α

2
+

1

2
dT Bd + gT d =

1

2
(1, dT )Bα

(

1

d

)

.

There exists a value of α such that we can rewrite the original problem as

min
1

2
dT

αBαdα subject to ‖dα‖
2 ≤ 1 + ∆2, eT

1 dα = 1,

where dα = (1, dT )T and e1 is the first canonical unit vector in Rn+1. This
formulation suggests that we can find the desired solution in terms of an
eigenpair of Bα. The resulting algorithm is superlinearly convergent.
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3. A shifted Steihaug-Toint method
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Introduction

Consider a sequence of subproblems

dj = arg mind∈Kj
Q(d) subject to ‖d‖ ≤ ∆,

Q(d) = 1

2
dT Bd + gT d, Kj = span{g, Bg, . . . , Bj−1g},

with corresponding Lagrange multipliers λj , j ∈ {1, . . . , n}.
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Lemma 1

A simple property of the conjugate gradient method

Let B be a SPD matrix, let

Kj = span{g, Bg, . . . , Bj−1g}, j ∈ {1, . . . , n},

be the j-th Krylov subspace given by the matrix B and the vector g. Let

dj = arg min
d∈Kj

Q(d), where Q(d) =
1

2
dT Bd + gT d.

If 1 ≤ k ≤ l ≤ n, then
‖dk‖ ≤ ‖dl‖.

Especially
‖dk‖ ≤ ‖dn‖, where dn = arg min

d∈Rn
Q(d)

(dn is the optimal solution).
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Lemma 2

Comparing Krylov subspaces of the matrices B and B + λI

Let λ ∈ R and

Kj(λ) = span{g, (B + λI)g, . . . , (B + λI)j−1g}, j ∈ {1, . . . , n},

be the j-dimensional Krylov subspace generated by the matrix B + λI
and the vector g. Then

Kj(λ) = Kj(0).
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Lemma 3

Properties of matrices B1 − B2 and B−1

2 − B−1

1

Let B1 and B2 be symmetric and positive definite matrices. Then

B1 − B2 � 0 if and only if B−1

2 − B−1

1 � 0, and

B1 − B2 ≻ 0 if and only if B−1
2 − B−1

1 ≻ 0.
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Lemma 4

A relation between sizes of the Lagrange multipliers and the norms of directions vectors

Let ZT
j BZj + λkI, λk ∈ R, k ∈ {1, 2}, be symmetric and positive

definite, where Zj ∈ Rn×j is a matrix whose columns form an
orthonormal basis for Kj . Let

dj(λk) = arg min
d∈Kj

Qλk
(d), where Qλ(d) =

1

2
dT (B + λI)d + gT d.

Then
λ2 ≤ λ1 ⇔ ‖dj(λ2)‖ ≥ ‖dj(λ1)‖.
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Theorem

The main theorem

Let dj , j ∈ {1, . . . , n}, be solutions of minimization problems

dj = arg min
d∈Kj

Q(d) subject to ‖d‖ ≤ ∆, where Q(d) =
1

2
dT Bd+gT d,

with corresponding Lagrange multipliers λj , j ∈ {1, . . . , n}. If
1 ≤ k ≤ l ≤ n, then

λk ≤ λl.
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Applications

The result of previous theorem can be applied to the following idea. We
apply the Steihaug-Toint method to a shifted subproblem

min Q̃(d) = Qλ̃(d) =
1

2
dT (B + λ̃I)d + gT d subject to ‖d‖ ≤ ∆.

This method uses the (preconditioned) conjugate gradient method applied
to the shifted linear system

(B + λ̃I)d + g = 0,

where λ̃ ≥ 0 is an approximation of the optimal Lagrange multiplier λopt

in MS method.

This method combines good properties of the MS and ST methods and
can be successfully preconditioned by the second way. The solution is
usually closer to the optimal solution than the point obtained by the
original ST method.
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Consequences

If we set λ̃ = λj for some j ≤ n, then

0 ≤ λ̃ = λj ≤ λn = λopt.

As a consequence of this inequality, one has:

1. λopt = 0 implies λ̃ = 0 so that ‖d‖ < ∆ implies λ̃ = 0. Thus the
shifted Steihaug-Toint method reduces to the standard Steihaug-Toint
method in this case.

2. If B ≻ 0 and 0 < λ̃ ≤ λopt, then one has
∆ = ‖(B + λoptI)−1g‖ ≤ ‖(B + λ̃I)−1g‖ < ‖B−1g‖. Thus the
unconstrained minimizer of Q̃(d) is closer to the trust-region boundary
than the unconstrained minimizer of Q(d) and we can expect that d(λ̃)
is closer to the optimal locally constrained step than d.

3. If B ≻ 0 and λ̃ > 0, then the matrix B + λ̃I is better conditioned
than B and we can expect that the shifted Steihaug-Toint method will
converge more rapidly than the standard Steihaug-Toint method.
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The algorithm

The shifted Steihaug-Toint method consists of the three major steps.

1. Carry out j ≪ n steps (usually j = 5) of the unpreconditioned Lanczos
method to obtain the tridiagonal matrix T ≡ Tj = ZT

j BZj.

2. Solve the subproblem

min
1

2
d̃T T d̃ + ‖g‖eT

1 d̃ subject to ‖d̃‖ ≤ ∆,

using the method of Moré and Sorensen, to obtain the Lagrange
multiplier λ̃.

3. Apply the (preconditioned) Steihaug-Toint method to the shifted
subproblem

min Q̃(d) subject to ‖d‖ ≤ ∆

to obtain the direction vector d = d(λ̃).
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4. Numerical experiments
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Numerical comparison

The methods (except for RSS) are implemented in the interactive system for
universal functional optimization UFO as subroutines for solving
trust-region subproblems. They were tested by using two collections of 22
sparse test problems with 1000 and 5000 variables – subroutines TEST14
and TEST15 described in [Lukšan,Vlček, V767, 1998], which can be
downloaded from the web page

www.cs.cas.cz/luksan/test.html

The results are given in two tables or four graphs, where

● NIT is the total number of iterations,
● NFV is the total number of function evaluations,
● NFG is the total number of gradient evaluations,
● NDC is the total number of Choleski-type decompositions

(complete for MS,DL,MDL and incomplete for PH,PST,PSST),
● NMV is the total number of matrix-vector multiplications,
● Time is the total computational time in seconds.
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Table 1 – TEST14 – unconstrained minimization

N Method NIT NFV NFG NDC NMV Time

1000 MS 1911 1952 8724 3331 1952 3.13
DL 2272 2409 10653 2195 2347 2.94
MDL 2132 2232 9998 1721 21670 3.17
ST 3475 4021 17242 0 63016 5.44
SST 3149 3430 15607 0 75044 5.97
GLRT 3283 3688 16250 0 64166 5.40
PH 1958 2002 8975 3930 57887 5.86
PST 2608 2806 12802 2609 5608 3.30
PSST 2007 2077 9239 2055 14440 2.97

5000 MS 8177 8273 34781 13861 8272 49.02
DL 9666 10146 42283 9398 9936 43.37
MDL 8913 9244 38846 7587 91784 48.05
ST 16933 19138 84434 0 376576 134.52
SST 14470 15875 70444 0 444142 146.34
GLRT 14917 16664 72972 0 377588 132.00
PH 8657 8869 37372 19652 277547 127.25
PST 11056 11786 53057 11057 23574 65.82
PSST 8320 8454 35629 8432 59100 45.57
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Table 2 – TEST15 – sums of squares

N Method NIT NFV NFG NDC NMV Time

1000 MS 1946 9094 9038 3669 2023 5.86
DL 2420 12291 12106 2274 2573 9.00
MDL 2204 10586 10420 1844 23139 7.86
ST 2738 13374 13030 0 53717 11.11
SST 2676 13024 12755 0 69501 11.39
GLRT 2645 12831 12547 0 61232 11.30
PH 1987 9491 9444 6861 84563 11.11
PST 3277 16484 16118 3278 31234 11.69
PSST 2269 10791 10613 2446 37528 8.41

5000 MS 7915 33607 33495 14099 8047 89.69
DL 9607 42498 41958 9299 9963 128.92
MDL 8660 37668 37308 7689 91054 111.89
ST 11827 54699 53400 0 307328 232.70
SST 11228 51497 50333 0 366599 231.94
GLRT 10897 49463 48508 0 300580 214.74
PH 8455 36434 36236 20538 281736 182.45
PST 9360 41524 41130 9361 179166 144.40
PSST 8634 37163 36881 8915 219801 140.44
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TEST14 – unconstrained minimization – N=1000
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TEST14 – unconstrained minimization – N=5000
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TEST15 – sums of squares – N=1000
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TEST15 – sums of squares – N=5000
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Comments

All problems are sparse ⇒ the CD methods (MS,DL,MDL) are very
efficient, much better than unpreconditioned MV methods (ST,SST,GLRT).
Note that the methods PH,RSS are based on a different principle.

1. Since TEST14 contains reasonably conditioned problems, the
preconditioned MV methods are competitive with the CD methods.
Note that NFG is much greater than NFV since the Hessian matrices
are computed by using gradient differences.

2. On the contrary, TEST15 contains several very ill-conditioned
problems and thus the CD methods work better than the MV methods.
Note that the problems are the sums of squares having the form

F (x) =
1

2
fT (x)f(x)

and NFV denotes the total number of the vector f(x) evaluations.
Since f(x) is used in the expression

g(x) = JT (x)f(x),

where J(x) is the Jacobian matrix of f(x), NFG is comparable with NFV.
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Summary

To sum up, our computational experiments indicate the following:

● the CD methods (MS,DL,MDL) are very efficient for ill-conditioned but
reasonably sparse problems;

● if the problems do not have sufficiently sparse Hessian matrices, then
the CD methods can be much worse than the MV methods
(ST,SST,GLRT);

● an efficiency of the MV methods strongly depends on suitable
preconditioning (we use an incomplete Choleski decomposition).

The shifted Steihaug-Toint method:

● works well in connection with the second way of preconditioning;
● the trust-region step reached in this case is usually close to the

optimum step obtained by the Moré-Sorensen’s method;
● gives the best results in comparison with other iterative methods for

computing the trust-region step.
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Thank you for your attention!
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