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Introduction

Introduction

@ Our aim: efficient, robust and accurate numerical scheme for
a simulation of 3D compressible flows (aerodynamics),

@ system of the compressible Navier—Stokes equations,

@ DGM - discontinuous Galerkin method,
DGFE method with SIPG,NIPG and IIPG variant,

@ BDF — backward difference formula,

@ semi—implict scheme — higher order in space and time
coordinates.
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w = (,’),[)Vl,/)V2,/)V3, E)T7

M. Holik Discontinuous Galerkin method for the simulation of 3D viscous
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System of the Navier-Stokes equations

ow - = )

E%—V-f(w):V-R(w,Vw) in Qx (0, 7),

W = (papvlapv2apv37 E)T 5

fs(w) - (/)Vs;l)stl + P551~, PVsV2 + ,0552, PVsV3 + P(553: (E + P) VS)T )
s=1,2,3,
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ow - - )
E%—V-f(w)zv-/-?(w./Vw) in Qx (0, 7),
W = (papvlapv2apv37 E)T 5
fs(W) = (PV57stV1 + Pds1, pvsva + pdsa, pvsv3 + pdss, (E + P) VS)T s
s=1,2,3,
’ NTAY
— / .
Rs (W7 VW) - <Oa7—15-7—2577_3s¢;7_rsvr + RGIDI’0X5> ) s = 172737
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System of the Navier-Stokes equations

ow - = )
E%—V-f(w):V-R(w,Vw) in Qx (0, 7),

W = (papvlapv2apv37 E)T 5

fs(W) = (PV57stV1 + Pds1, pvsva + pdsa, pvsv3 + pdss, (E + P) VS)T s

s=1,2,3,
: AN
_ 2l _

Rs (W,VW) - (077—15-72577357;Trsvr + Re Pr 8X5> ) s = 172737
1 ov. v, 2 .

Trs = oo {(8; + 8Xs> — 3dIVV($,S:| , r,s =123,
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System of the Navier-Stokes equations

W = (papvlapv2apv37 E)T 5
T
fs(W) = (PV57stV1 + Pds1, pvsva + pdsa, pvsv3 + pdss, (E + P) Vs) s

s=1,2,3,
> 00\
R, (W7VW) = (077—15172577357;7—rsvr + RevPr 8X5> , S= 172731
1 ov, ov, 2 .
Tis = po [(8; + 8)(;) — 3C|IVV5,S:| , r,s=1,273

thermodynamical relations : p = (y—1) (E — p|v|*/2) , E = cypb+p|v|*/2
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System of the Navier-Stokes equations

Properties of the inviscid /viscous fluxes

@ inviscid fluxes f :

fs(w) = Aj(w)w, s=1,23

3
P=> nAsw)=TAT ' =P"(w,i)+P (w,)

s=1
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System of the Navier-Stokes equations

Properties of the inviscid /viscous fluxes

@ inviscid fluxes fs

fs(w) = Aj(w)w, s=1,23

P=> nAsw)=TAT ' =P"(w,i)+P (w,)

@ viscous fluxes Rs:

(w, Vo) = ZKSk(w a—go, s=1,23.
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Notations

spac nidiscretization
problem

Linearization of the fluxes

Discrete problem

Discretization

Discretization — Notations

DGFE method — piecewise polynomial discontinuous
approximation,

T — triangulation of Q (tetrahedra, pyramids or hexahedra),
Sh=(Sh)% Sh={vivlk e PP(K)VKeT,},

traces:

v|rr) = trace of v|k, on I, v|r) = trace of v|k, on T,
jump: [v] = V||—(L) - V}F(R)a

mean value: (v) = 1 (V|r(L) + Vlr(R)) .
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Discretization

Notations

space semidiscretization

Semidiscrete problem
arization of the fluxes

rete problem

@ diffusion form: for w, ¢ € Sj:

3
- 0
an(w,p) = E /KE Rs(w,Vw)a—X(de

s=1 o

KET,

resp

- Z/ri“

=1

k

S Kex(w) 02 )ns) <[] dS

3 3 B(P
- © Z /I_ZI«ZKSJ(W)%)ns)‘[W]dS

rerp

fey [y

rerp

M. Holik

k=1

3

D (Kew(w) %i)ns) - [ws]dS

k=1
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Notations

space semidiscretization

Semidiscrete problem
arization of the fluxes

rete problem

@ diffusion form: for w, ¢ € Sj:

3
a 0
ap(w,p) = Z/KZRS(W,*VW)a;O dx
s=1 s

KeT,

_ Z /_;((;Ks,k(w) %>ns)'[tp]d5

resp =

3 3 8(}9
- © Z /I_ZI«ZKSJ(W)%)ns)‘[W]dS

rerp

+ eZ/ri(

rerp

M. Holik

k=1

3

D (Kew(w) %i)ns) - [ws]dS

k=1
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Notations

space semidiscretization

Semidiscrete problem
arization of the fluxes

Discretization

rete problem

@ diffusion form: for w, ¢ € Sj:

" ’ = RS ,V — dx
o) Kez::rh/K; w w)axs
- X /FZ“Z Ks k(w) %MS) [e]dS
e
> /ZUZstk(W)ams)-[wlds

+ © Z /Z (Z(Ks,k(w) g—:)ns) - [wg]dS
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Discretization

Notations

space semidiscretization

Semidiscrete problem
arization of the fluxes

rete problem

@ diffusion form: for w, ¢ € Sj:

3
- 0
an(w,p) = E /KE Rs(w,Vw)a—X(de

s=1 o

KET,

resp

- Z/ri“

=1

k

S Kex(w) 02 )ns) <[] dS

3 3 B(P
- © Z /I_ZI«ZKSJ(W)%)ns)‘[W]dS

rerp

fey [y

rerp

k=1

3

D (Kew(w) %i)ns) - [ws]dS

k=1

@ ©=1inSIPG, ©= —1in NIPG, © =0 in IIPG
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Notations

space semidiscretization
Semidiscrete problem
Lineariz n of the fluxes
Discrete problem

Discretization

space semidiscretization (2)

@ convection form: for w, ¢ € Sj:

bi(w) = = 3 [ Fw) - Voaxt 30 [ H(wlwl®. ) [elras,
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Notations

space semidiscretization
Semidiscrete problem
Lineariz n of the fluxes
Discrete problem

Discretization

space semidiscretization (2)

@ convection form: for w, ¢ € Sj:

Bh(w7 Z/ V()Ddx+ Z/ |§‘L)7W|(FR)7F'|—) [(P]rdsv

KeT;, ref,
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space semidiscretization (2)

@ convection form: for w, ¢ € Sj:
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Notations

space semidiscretization
Semidiscrete problem
Line n of the fluxes
Discrete problem

Discretization

space semidiscretization (2)

@ convection form: for w, ¢ € Sj:

Bu(w.) = = > [ Fw)-Voaxt 30 [ 1 (wlw? ) [elras,

KeT, ref,

H is the Vijayasundaram numerical flux,

H (wi®, wi®, i) = P ((wn), ) wol ) + P ((wa), 7) wi
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Notations

space semidiscretization
Semidiscrete problem
Linearization of the fluxes
Discrete problem

Discretization

space semidiscretization (2)

@ convection form: for w, ¢ € Sj:

bi(w, ©) Z/ )-Vepdx + Z/ )[cp]rdS,

KeT, ref,

H is the Vijayasundaram numerical flux,

H (wi®, wi®, i) = P ((wn), ) wol ) + P ((wa), 7) wi

@ stabilization form: for w, ¢ € Sj:

= > /a[w][cp]dS— Z/UWB t) pdS

rerpp rerp
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@ convection form: for w, ¢ € Sj:

bi(w, ©) Z/ )-Vepdx + Z/ )[cp]rdS,

KeT, ref,

H is the Vijayasundaram numerical flux,

H (wi®, wi®, i) = P ((wn), ) wol ) + P ((wa), 7) wi

@ stabilization form: for w, ¢ € Sj:

Jp (w, ) = Z /a[w] [¢]dS — Z /O'WB ) dS

reFpP” rerp
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Notations

space semidiscretization
Semidiscrete problem
Linearization of the fluxes
Discrete problem

Discretization

space semidiscretization (2)

@ convection form: for w, ¢ € Sj:

bi(w, ©) Z/ )-Vepdx + Z/ )[cp]rdS,

KeT, ref,

H is the Vijayasundaram numerical flux,

H (wi®, wi®, i) = P ((wn), ) wol ) + P ((wa), 7) wi

@ stabilization form: for w, ¢ € Sj:

Jr(w,0)= > /U[w][cp]dS— Z/UWB t) pdS

rerpp rerp

olr = (IF|Re)™",
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midiscretization
iscrete problem
rization of the fluxes
problem

Discretization

Semidiscrete problem

@ method of lines for the N.S. equation

@ approximate solution wp(t) € Sy, satisfies the identity:

((’)wh(t)7

.20 ) -+ an(wal).20) + Balwi(0). 1)

+ Jp(wp, ) =0 Ve, € SpVt € (0, T),
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@ method of lines for the N.S. equation
@ approximate solution wp(t) € Sy, satisfies the identity:

owy(t _ _
(). 0y) + antwalt)e o) + Batwil0). 1)
+ Jh(Wh,QOh) =0 Vo, € SpVt € (O’ T)7

@ system of ODE with initial condition,
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Notations
midiscretization
iscrete problem
arization of the fluxes
problem

Discretization

Semidiscrete problem

@ method of lines for the N.S. equation
@ approximate solution wp(t) € Sy, satisfies the identity:

<6W8ht(t), <ph> + ap(wh(t), p) + br(wh(t), @p)

+ Jh(Wh,QOh) =0 Vo, € SpVt € (O’ T)7
@ system of ODE with initial condition,

@ Runge—Kutta methods — high time step restriction,
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Notations
midiscretization
iscrete problem
arization of the fluxes
problem

Discretization

Semidiscrete problem

method of lines for the N.S. equation
approximate solution wy(t) € S, satisfies the identity:

<6W8ht(t), <ph> + ap(wh(t), p) + br(wh(t), @p)

+ Jh(Wh,QOh) =0 Vo, € SpVt € (O’ T)7
system of ODE with initial condition,

Runge—Kutta methods — high time step restriction,

full implicit scheme — system of nonlinear algebraic equations.
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Notations
S emidiscretization

screte problem
Linearization of the fluxes
Discrete problem

Discretization

Linearization of the inviscid fluxes

e inviscid terms: by (Wp, wp, ©),), Wh, Wh, @ € Sp,

) 0
by(Wh, wh, ) = — Z/ZA Wh- Gihd

KeTy, s=1

+ Z/ p+(w,, ) wi| S + P (W), 7) wi| )-cp,,dS,

rer,
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Notations
S emidiscretization

screte problem
Linearization of the fluxes
Discrete problem

Discretization

Linearization of the inviscid fluxes

e inviscid terms: by(Wp, Wh, ©p), Wh, Wh, 0, € Sp,

- 0
bi(Wh, wh, p,) = — Z/ZA Wh - aihd

KeTy, s=1

+ Z/ (P (46, Ay wil() 4+ P~ (i), ) wi (V) - 94,

rer,

o linear with respect to wy,
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Linearization of the inviscid fluxes

e inviscid terms: by(Wp, Wh, ©p), Wh, Wh, 0, € Sp,

0
by(Wh, wh, 0,) = — Z/ZA Wh - aihd

KeTy, s=1

+ 30 [(P* (. wall P (G 7w ) - .

rer,

o linear with respect to wy, ¢,
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idiscretization
idiscrete problem
Linearization of the fluxes
Discrete problem

Discretization

Linearization of the inviscid fluxes

e inviscid terms: by(Wp, Wh, ©p), Wh, Wh, 0, € Sp,

3
" - 0
by(Wh, Wh,,) = — Z/ZAS(W”)W”’ Gih dx
K s

KeTy s=1
+ / (P (n), Ay wall™ + P (), 7) wal () - 0,5,
rer, T

o linear with respect to wy, ¢,
e consistent with by:

bh(whvsah) = bh(Wh,Wh,(Ph) v Wh, Ph € Sh.
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Notations

space semidiscretization
Semidiscrete problem
Linearization of the fluxes
Discrete problem

Discretization

Linearization of the viscous fluxes

an(Wp, wWh, ) = Z /Z(Z(Ks’k(wh)% ns) . %ish dx

+ © Z /FZ (Z(Ks,k(ﬁlh) %)ns) - [wg]dS

3
reFp”  s=1 k=1
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Notations

spa nidiscretization
Semidiscrete problem
Linearization of the fluxes
Discrete problem

Discretization

Linearization of the viscous fluxes

@ viscous terms: ap(Wp, Wh, ©p), Wh, Wh, @) € S,

ap(Wh, Wh, ) = Z /Z(Z(Ks’k(wh)% ns) . %ish x

= 2 U Kl ) -l as

- © Z /Z (<ZKS,k(V~\’h) %)ns) - [wp]dS

+ © Z /FZ (Z(Ks,k(ﬁlh) %)ns) - [wg]dS

reFp”  s=1 k=1

@ linear with respect to wy,
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Notations

spa nidiscretization
Semidiscrete problem
Linearization of the fluxes
Discrete problem

Discretization

Linearization of the viscous fluxes

@ viscous terms: ap(Wp, Wh, ©p), Wh, Wh, @) € S,

Oy

ap(Wh, Wh, 0,) = Z /Z(Z(Ks’k(wh)% ns)- axsh x

- Y [ Keali) G0 - [ as

- © Z /Z (<ZKS,k(V~\’h) %ﬁ:)ns) - [wp]dS

+ © Z /FZ (Z(Ks,k(ﬁlh) %)ns) - [wg]dS

reFp”  s=1 k=1

@ linear with respect to wy, ¢,
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X P midiscretization
Discretization

Linearization of the fluxes
Discrete problem

Full space-time discrete problem

@ semi—implicit scheme: nonlinear parts of a,, by, are treated
explicitly and linear parts implicitly,

M. Holik Discontinuous Galerkin method for the simulation of 3D viscous



X P midiscretization
Discretization

Linearization of the fluxes
Discrete problem

Full space-time discrete problem

@ semi—implicit scheme: nonlinear parts of a,, by, are treated
explicitly and linear parts implicitly,
@ BDF — backward difference formula,

M. Holik Discontinuous Galerkin method for the simulation of 3D viscous



Notations
X P nidiscretization
Discretization (GISCreieatio
Linearization of the fluxes
Discrete problem

Full space-time discrete problem

@ semi—implicit scheme: nonlinear parts of a,, by, are treated
explicitly and linear parts implicitly,

@ BDF — backward difference formula,

0 (0,T) = to<ty < <ty Tk = thy1 — tk,
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Notations
S emidiscretization
screte problem
3 ion of the fluxes
Discrete problem

Discretization

Full space-time discrete problem

@ semi—implicit scheme: nonlinear parts of a,, by, are treated
explicitly and linear parts implicitly,

@ BDF — backward difference formula,

0 (0,T) = to <ty <---<tr, Tk = thg1 — tk,

° wh(tk)%wﬁ €Sy, k=0,...,r:
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. ot S etization
Discretization -

Linearization of the fluxes
Discrete problem

Full space-time discrete problem

@ semi—implicit scheme: nonlinear parts of a,, by, are treated
explicitly and linear parts implicitly,

@ BDF — backward difference formula,

0 (0,T) = to <ty <---<tr, Tk = thg1 — tk,

° wh(tk)%wﬁ €Sy, k=0,...,r

1 (< _
™ <Za/W:H ’:‘Ph> + ap <Zﬁ,wk+1 17 /I:HaSOh)
=0

I=1

<Zﬁwk“ i, ) 3 (wh ) =0

VYe,€8h k=n—1,...,r—1,
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Notations
S emidiscretization
screte problem
ion of the fluxes
Dlscrete problem

Discretization

Full space-time discrete problem

@ semi—implicit scheme: nonlinear parts of a,, by, are treated
explicitly and linear parts implicitly,

@ BDF — backward difference formula,

0 (0,T) = to <ty <---<tr, Tk = thg1 — tk,

° wh(tk)%w,’; €Sy, k=0,...,r

1 . kb1t kb=l kel
— E a E
py < QW + ap Biwy, yWh 5 Pp

1=0

- (ZW ) h o) o
1=1

VYe,€8h k=n—1,...,r—1,
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. ot S etization
Discretization -

Linearization of the fluxes
Discrete problem

Full space-time discrete problem

@ semi—implicit scheme: nonlinear parts of a,, by are treated
explicitly and linear parts implicitly,
@ BDF — backward difference formula,
0 (0,T) = to<ty < <ty Tk = thy1 — tk,
° wh(tk)%wﬁ €Sy, k=0,...,r
le <ialwﬁﬂ / > tap <Zb) wk+1 /’ k+1’¢h>

1=0

(S i) ) <

VYe,€8h k=n—1,...,r—1,
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. ot etization
Discretization -

Linearization of the fluxes

Discrete problem

Full space-time discrete problem

@ semi—implicit scheme: nonlinear parts of a,, by, are treated
explicitly and linear parts implicitly,

o BDF — backward difference formula
0 (0,T) = to<ty < <ty Tk = thy1 — tk,
] wh(tk)%wﬁ €Sy, k=0

1 u k+1—1 k+1—1 k+1

— aw , +a Biwy, SWp T

2 (Somirin) e (£ ‘

(o ) o)
=1

VYe,€8h k=n—1,...,r—1,
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Notations
S emidiscretization
screte problem
ion of the fluxes
Dlscrete problem

Discretization

Full space-time discrete problem

@ semi—implicit scheme: nonlinear parts of a,, by, are treated
explicitly and linear parts implicitly,

@ BDF — backward difference formula,

0 (0,T) = to <ty <---<tr, Tk = thg1 — tk,

° wh(tk)%wﬁ €Sy, k=0,...,r:

1 . kb1t kbl kel
— E a E
py < QW + ap Biwy, yWh 5 Pp

1=0

- (ZW ) ot ) o
1=1

VYe,€8h k=n—1,...,r—1,

0 - . .
w) is S,—approximation of w,
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. ot S etization
Discretization -

Linearization of the fluxes
Discrete problem

Full space-time discrete problem

@ semi—implicit scheme: nonlinear parts of a,, by, are treated
explicitly and linear parts implicitly,

@ BDF — backward difference formula,

0 (0,T) = to <ty <---<tr, Tk = thg1 — tk,

° wh(tk)%wﬁ €Sy, k=0,...,r:

1 (< _
™ <Za/W:H ’:‘Ph> + ap <Zﬁ,wk+1 17 /I:HaSOh)
=0

I=1

<Zﬁwk“ i, ) 3 (wh ) =0

VYe,€8h k=n—1,...,r—1,
w?, is Sp—approximation of wO7

wﬁ,, 1 </ < n—1 given by a one-step method.

M. Holik
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3D simulation

Introduction

e ADIGMA : A EUROPEAN PROJECT ON THE
DEVELOPMENT OF ADAPTIVE HIGHER ORDER
VARIATIONAL METHODS FOR AEROSPACE
APPLICATIONS
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3D simulation

Introduction

e ADIGMA : A EUROPEAN PROJECT ON THE
DEVELOPMENT OF ADAPTIVE HIGHER ORDER
VARIATIONAL METHODS FOR AEROSPACE
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@ COOLFIuiD : Computational Object Oriented Library for Fluid
Dynamics (VKI Brussel)
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3D simulation

Library structure

o Kernel : Enironment, IOUtils, MathTools, ...

@ Internal plugins : FiniteVolume, FiniteElement, NavierStokes,
SpectralFititeVolume, ...

o External plugins : DiscontGalerkin
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3D simulation

Geometric entity - concept

e CELL, FACE, EDGE

@ entity where to apply discretization
o felxibility to discretization - 2D : Triagels, Quads, ...,
3D : Tetrahedra, Prism, Pyramids, ...
@ build on the fly
o perform integration - Lagrange, Legendre, ...
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3D simulation

Geometric entity - concept

e CELL, FACE, EDGE
@ entity where to apply discretization
o felxibility to discretization - 2D : Triagels, Quads, ...,

3D : Tetrahedra, Prism, Pyramids, ...
@ build on the fly

o perform integration - Lagrange, Legendre, ...

@ interpolation of sollution and geometry
@ states and nodes
o geometry shape function
@ sollution shape function

@ provides transformation to master elements
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3D simulation

language of Testcase

Simulator.SubSystem.SpaceMethod = DiscontGalerkinSolver
Simulator.SubSystem.DiscontGalerkinSolver.Builder = DG

Simulator.SubSystem.DiscontGalerkinSolver.Data.VolumelntegratorQuadrature
= DGGaussLegendre
Simulator.SubSystem.DiscontGalerkinSolver.Data.VolumelntegratorOrder = P3

M. Holik Discontinuous Galerkin method for the simulation of 3D viscous



2D Example

benchmark of unsteady transonic flow around the NACA0012
airfoil,

M = 0.85,a = 0.0, Re = 10000,

simulation for t € (0, 80),

grid with 3 206 triangles, P1 approximation, ABDF 279 order

flow regime with periodic propagation
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2D Example

Naca-video

(Loading NACA)
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NACA_A7_P1.avi
Media File (video/avi)
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