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Introduction

Our aim: efficient, robust and accurate numerical scheme for
a simulation of 3D compressible flows (aerodynamics),

system of the compressible Navier–Stokes equations,

DGM – discontinuous Galerkin method,
DGFE method with SIPG,NIPG and IIPG variant,

BDF – backward difference formula,

semi–implict scheme – higher order in space and time
coordinates.
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M. Hoĺık Discontinuous Galerkin method for the simulation of 3D viscous compressible flows



Introduction
System of the Navier-Stokes equations

Discretization
3D simulation

2D Example
Conclusion

Introduction

Our aim: efficient, robust and accurate numerical scheme for
a simulation of 3D compressible flows (aerodynamics),

system of the compressible Navier–Stokes equations,

DGM – discontinuous Galerkin method,
DGFE method with SIPG,NIPG and IIPG variant,

BDF – backward difference formula,

semi–implict scheme – higher order in space and time
coordinates.
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System of the Navier-Stokes equations

∂w

∂t
+∇ · ~f (w) = ∇ · ~R(w,∇w) in Ω× (0,T ),

w = (ρ, ρv1, ρv2, ρv3,E )T ,

fs(w) = (ρvs , ρvsv1 + pδs1, ρvsv2 + pδs2, ρvsv3 + pδs3, (E + p) vs)
T

,

s = 1, 2, 3,

Rs (w,∇w) =

(
0, τ1s , τ2s , τ3s ,

3∑
r=1

τrsvr +
γ

Re Pr

∂θ

∂xs

)T

, s = 1, 2, 3,

τrs =
1

Re

[(
∂vs

∂xr
+

∂vr

∂xs

)
− 2

3
divvδrs

]
, r , s = 1, 2, 3,

thermodynamical relations : p = (γ−1)
(
E − ρ|v|2/2

)
,E = cV ρθ+ρ|v|2/2
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M. Hoĺık Discontinuous Galerkin method for the simulation of 3D viscous compressible flows



Introduction
System of the Navier-Stokes equations

Discretization
3D simulation

2D Example
Conclusion

System of the Navier-Stokes equations

∂w

∂t
+∇ · ~f (w) = ∇ · ~R(w,∇w) in Ω× (0,T ),

w = (ρ, ρv1, ρv2, ρv3,E )T ,

fs(w) = (ρvs , ρvsv1 + pδs1, ρvsv2 + pδs2, ρvsv3 + pδs3, (E + p) vs)
T

,

s = 1, 2, 3,

Rs (w,∇w) =

(
0, τ1s , τ2s , τ3s ,

3∑
r=1

τrsvr +
γ

Re Pr

∂θ

∂xs

)T

, s = 1, 2, 3,

τrs =
1

Re

[(
∂vs

∂xr
+

∂vr

∂xs

)
− 2

3
divvδrs

]
, r , s = 1, 2, 3,

thermodynamical relations : p = (γ−1)
(
E − ρ|v|2/2

)
,E = cV ρθ+ρ|v|2/2
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Properties of the inviscid/viscous fluxes

inviscid fluxes fs :

fs(w) = As(w)w, s = 1, 2, 3,

P =
3X

s=1

nsAs(w) = TΛT−1 = P+(w,~n) + P−(w,~n)

viscous fluxes Rs :

Rs(w,∇ϕ) =
3X

k=1

Ks,k(w)
∂ϕ

∂xk
, s = 1, 2, 3.
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M. Hoĺık Discontinuous Galerkin method for the simulation of 3D viscous compressible flows



Introduction
System of the Navier-Stokes equations

Discretization
3D simulation

2D Example
Conclusion

Notations
space semidiscretization
Semidiscrete problem
Linearization of the fluxes
Discrete problem

Discretization — Notations

DGFE method – piecewise polynomial discontinuous
approximation,

Th – triangulation of Ω (tetrahedra, pyramids or hexahedra),

Sh ≡ (Sh)
5, Sh ≡ {v ; v |K ∈ Ps(K ) ∀K ∈ Th },

traces:
v |Γ(R) = trace of v |KR

on Γ, v |Γ(L) = trace of v |KL
on Γ,

jump: [v ]Γ = v
∣∣
Γ(L) − v

∣∣
Γ(R) ,

mean value: 〈v〉Γ = 1
2

(
v
∣∣
Γ(L) + v

∣∣
Γ(R)

)
.
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Notations
space semidiscretization
Semidiscrete problem
Linearization of the fluxes
Discrete problem

space semidiscretization (1)

diffusion form: for w, ϕ ∈ Sh:

āh(w, ϕ) =
X

K∈Th

Z
K

3X
s=1

Rs(w,∇w)
∂ϕ

∂xs
dx

−
X

Γ∈F ID
h

Z
Γ

3X
s=1

(〈
3X

k=1

Ks,k(w)
∂w

∂xk
〉ns) · [ϕ]dS

− Θ
X

Γ∈F ID
h

Z
Γ

3X
s=1

`
〈

3X
k=1

Ks,k(w)
∂ϕ

∂xk
〉ns

´
· [w]dS

+ Θ
X

Γ∈FD
h

Z
Γ

3X
s=1

` 3X
k=1

(Ks,k(w)
∂ϕ

∂xk
)ns

´
· [wB ]dS

Θ = 1 in SIPG, Θ = −1 in NIPG, Θ = 0 in IIPG
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M. Hoĺık Discontinuous Galerkin method for the simulation of 3D viscous compressible flows



Introduction
System of the Navier-Stokes equations

Discretization
3D simulation

2D Example
Conclusion

Notations
space semidiscretization
Semidiscrete problem
Linearization of the fluxes
Discrete problem

space semidiscretization (1)

diffusion form: for w, ϕ ∈ Sh:
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Notations
space semidiscretization
Semidiscrete problem
Linearization of the fluxes
Discrete problem

space semidiscretization (2)

convection form: for w, ϕ ∈ Sh:

b̄h(w, ϕ) = −
X

K∈Th

Z
K

~f (w) ·∇ϕ dx +
X
Γ∈Fh

Z
Γ

H
“
w|(L)

Γ ,w|(R)
Γ ,~nΓ

”
[ϕ]Γ dS ,

H is the Vijayasundaram numerical flux,

H
“
w|(L)

Γ ,w|(R)
Γ ,~nΓ

”
= P+ (〈wh〉,~n)wh|(L)

Γ + P− (〈wh〉,~n)wh|(R)
Γ

stabilization form: for w, ϕ ∈ Sh:

Jσ
h (w, ϕ) =

X
Γ∈F ID

h

Z
Γ

σ[w] [ϕ]dS −
X

Γ∈FD
h

Z
Γ

σ wB(t) ϕ dS

σ|Γ = (|Γ|Re )−1,
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Semidiscrete problem

method of lines for the N.S. equation

approximate solution wh(t) ∈ Sh satisfies the identity:(
∂wh(t)

∂t
,ϕh

)
+ āh(wh(t),ϕh) + b̄h(wh(t),ϕh)

+ Jh(wh,ϕh) = 0 ∀ϕh ∈ Sh ∀t ∈ (0,T ),

system of ODE with initial condition,

Runge–Kutta methods → high time step restriction,

full implicit scheme → system of nonlinear algebraic equations.
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M. Hoĺık Discontinuous Galerkin method for the simulation of 3D viscous compressible flows



Introduction
System of the Navier-Stokes equations

Discretization
3D simulation

2D Example
Conclusion

Notations
space semidiscretization
Semidiscrete problem
Linearization of the fluxes
Discrete problem

Linearization of the inviscid fluxes

inviscid terms: bh(w̃h,wh,ϕh), w̃h,wh,ϕh ∈ Sh

bh(w̃h,wh, ϕh) = −
X

K∈Th

Z
K

3X
s=1

As(w̃h)wh ·
∂ϕh

∂xs
dx

+
X
Γ∈Fh

Z
Γ

“
P+ (〈w̃h〉,~n)wh|(L)

Γ + P− (〈w̃h〉,~n)wh|(R)
Γ

”
· ϕhdS ,

linear with respect to wh,ϕh

consistent with b̄h:

b̄h(wh,ϕh) = bh(wh,wh,ϕh) ∀ wh,ϕh ∈ Sh.
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Linearization of the viscous fluxes

viscous terms: ah(w̃h,wh,ϕh), w̃h,wh,ϕh ∈ Sh,

ah(w̃h,wh, ϕh) =
X

K∈Th

Z
K

3X
s=1

` 3X
k=1

(Ks,k(w̃h)
∂wh

∂xk
)ns

´
· ∂ϕh

∂xs
dx

−
X

Γ∈F ID
h

Z
Γ

3X
s=1

(〈
3X

k=1

Ks,k(w̃h)
∂wh

∂xk
〉ns) · [ϕh]dS

− Θ
X

Γ∈F ID
h

Z
Γ

3X
s=1

`
〈

3X
k=1

Ks,k(w̃h)
∂ϕh

∂xk
〉ns

´
· [wh]dS

+ Θ
X

Γ∈FD
h

Z
Γ

3X
s=1

` 3X
k=1

(Ks,k(w̃h)
∂ϕh

∂xk
)ns

´
· [wB ]dS

linear with respect to wh, ϕh
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Full space-time discrete problem

semi–implicit scheme: nonlinear parts of ah, bh are treated
explicitly and linear parts implicitly,

BDF – backward difference formula,

(0,T ) → t0 < t1 < · · · < tr , τk ≡ tk+1 − tk ,

wh(tk) ≈ wk
h ∈ Sh, k = 0, . . . , r :

1

τk

 
nX

l=0

αlw
k+1−l
h , ϕh

!
+ ah

 
nX

l=1

βlw
k+1−l
h ,wk+1

h , ϕh

!

+bh

 
nX

l=1

βlw
k+1−l
h ,wk+1

h , ϕh

!
+ Jh

“
wk+1

h , ϕh

”
= 0

∀ϕh ∈ Sh, k = n − 1, . . . , r − 1,

w0
h is Sh–approximation of w0,

wl
h, 1 ≤ l ≤ n − 1 given by a one-step method.
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Library structure

Kernel : Enironment, IOUtils, MathTools, ...

Internal plugins : FiniteVolume, FiniteElement, NavierStokes,
SpectralFititeVolume, ...

External plugins : DiscontGalerkin
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M. Hoĺık Discontinuous Galerkin method for the simulation of 3D viscous compressible flows



Introduction
System of the Navier-Stokes equations

Discretization
3D simulation

2D Example
Conclusion

Library structure

Kernel : Enironment, IOUtils, MathTools, ...

Internal plugins : FiniteVolume, FiniteElement, NavierStokes,
SpectralFititeVolume, ...

External plugins : DiscontGalerkin
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Geometric entity - concept

CELL, FACE, EDGE
entity where to apply discretization
felxibility to discretization - 2D : Triagels, Quads, ...,

3D : Tetrahedra, Prism, Pyramids, ...
build on the fly
perform integration - Lagrange, Legendre, ...

interpolation of sollution and geometry
states and nodes
geometry shape function
sollution shape function

provides transformation to master elements
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language of Testcase

Simulator.SubSystem.SpaceMethod = DiscontGalerkinSolver

Simulator.SubSystem.DiscontGalerkinSolver.Builder = DG

Simulator.SubSystem.DiscontGalerkinSolver.Data.VolumeIntegratorQuadrature

= DGGaussLegendre

Simulator.SubSystem.DiscontGalerkinSolver.Data.VolumeIntegratorOrder = P3
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NACA

benchmark of unsteady transonic flow around the NACA0012
airfoil,

M = 0.85, α = 0.0,Re = 10000,

simulation for t ∈ (0, 80),

grid with 3 206 triangles, P1 approximation, ABDF 2nd order

flow regime with periodic propagation
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Naca-video

(Loading NACA)
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Conclusion

combination of DGFE method (SIPG, NIPG, IIPG) and BDF,

semi–implicit scheme: high order of approximation with
respect to space and time coordinates,

linear system of algebraic equations at each time step,

implement this method to COOLFluid,

3D simulations, with time step adaptation, curved
elements(geometry higher than 1), solution of high order,
stabilizations, higher order formulas for time discretization,
mesh adaptation
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