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ALE Formulation of the Continuous Problem Continuous Problem
ALE Formulation

Let Q; C R? be a bounded domain depending on time t with
boundary dQ; =T /Ul U FWt.

Continuous Problem
Find w(-,t) : Q; — R* such that

ow 2 9fs(w)
WJrs:l IXs =0

where

W = (PaPVlapVLe)T € R47
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ALE Formulation of the Continuous Problem Continuous Problem
ALE Formulation

Let Q; C R? be a bounded domain depending on time t with
boundary dQ; =T /Ul U FWt.

Continuous Problem
Find w(-,t) : Q; — R* such that

ow 2 ofs(w)

2

where

W= (p)pvlapV27e)T € R4)
fs(W) = (pVs, pV1Vs + 1P, PV2Vs + 825P, (€ +P)Vs)
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ALE Formulation of the Continuous Problem Continuous Problem
ALE Formulation

We add the thermodynamical relation

p=(r—1)(e-plv|?/2).
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ALE Formulation of the Continuous Problem Continuous Problem
ALE Formulation

We add the thermodynamical relation
p=(r—1)(e—p|v|*/2).
and boundary conditions:

IN,Fo: asinthe FVM,
Mw, :V-n=2z-n, where z is the velocity of the moving wall.
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Q ALE Formulation of the Continuous Problem
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ALE Formulation of the Continuous Problem Continuous Problem
ALE Formulation

o7,
Qo Bl N Qt/\

Qo — Oy,
ot i X =X =X (X,1).

We define the ALE velocity:

d

Z(X,1) = 20 A(X), X eQo
7

(1)

z(x,t) =Z( t(x),1), x €y
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ALE Formulation of the Continuous Problem Continuous Problem
ALE Formulation

o7,
Qo Bl N Qt/\

Qo — Oy,
ot i X =X =X (X,1).

We define the ALE velocity:

0 _
z(X X XeQ
( t) atfgyt( )7 SR (1)
z(x,t) =Z( t(x),1), x €y
and the ALE derivative of a function f =f(x,t) defined in Q;:
DAf of
E(XJ) S5t = (KD )10 )

f(X,t) =f(A(X),1), X €Qo.
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ALE Formulation of the Continuous Problem Continuous Problem
ALE Formulation

o7,
Qo Bl N Qt/\

Qo — Oy,
ot i X =X =X (X,1).

We define the ALE velocity:

0 _
z(X X XeQ
( t) at‘Q{t( )7 SR (1)
z(x,t) =Z( t(x),1), x €y
and the ALE derivative of a function f =f(x,t) defined in Q;:
DAf of
ﬁ(x,t) 5t = (KD 10 )

fOX,t) =f(4(X),1), X € Qo.
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ALE Formulation of the Continuous Problem Continuous Problem
ALE Formulation

DAf  of
D =5tz

DAf  of . .
2) ot = §+dlv(zf) —fdivz.
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ALE Formulation of the Continuous Problem Continuous Problem
ALE Formulation

DAf  of
1 AP
) ot —a T

Using this lemma, we can reformulate the Euler equations:

Formulation 1:

8W ofs(w) DAW 2 9fs(w)
Z 8x5 =0 Dt +S; dXs

—z-Ow=0.
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ALE Formulation of the Continuous Problem Continuous Problem
ALE Formulation

)DiAffﬁ_i_z
Dt ot

Of,

Using this lemma, we can reformulate the Euler equations:

Formulation 1:

2 A 2
o L) o, D L) g,

& IXs Dt & JXs
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ALE Formulation of the Continuous Problem Continuous Problem
ALE Formulation

DAf  of
2)ﬁ §+dlv(zf)—fd|vz

Using this lemma, we can reformulate the Euler equations:

Formulation 2:

8W ofs(w) DAW 2 dgs(w)
Z 8xs =0 Dt +S; IXs

+wdivz = 0.
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ALE Formulation of the Continuous Problem Continuous Problem
ALE Formulation

DAf  9f .
)Dit_Eerlv(zf)—fdlvz.

Using this lemma, we can reformulate the Euler equations:

Formulation 2:

ow 2 9fs(w) DA 2 8gs
WjLZ OXs =0 z

s=1

+wdivz =0.
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ALE Formulation of the Continuous Problem Continuous Problem
ALE Formulation

DAf  of
2)ﬁ §+dlv(zf)—fd|vz

Using this lemma, we can reformulate the Euler equations:

Formulation 2:

8W ofs(w) DAw 2 dgs(w)
Z 8xs 0= Dt +:1 0Xs

S

+wdivz = 0.

Here gs,s = 1,2, are modified inviscid fluxes

gs(w) =fs(W) —zsw.
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Discontinuous Galerkin Discretization Semi-implicit Time Discretization

@ Discontinuous Galerkin Discretization
@ Space Semidiscretization
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Space Semidiscretization

Discontinuous Galerkin Discretization Semi-implicit Time Discretization

@ Let ., be a partition of the closure Q; into a finite number of
closed triangles K € %,.

V. Kucera Compressible Flows in Time Depen



Space Semidiscretization

Discontinuous Galerkin Discretization Semi-implicit Time Discretization

@ Let ., be a partition of the closure Q; into a finite number of
closed triangles K € %,.

@ By .#,, we denote the set of all edges of %,. For a given edge
I € %, we define a unit normal nr.
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Space Semidiscretization

Discontinuous Galerkin Discretization Semi-implicit Time Discretization

For each interior face I' € .%, there exist two neighbours

Kr(L), KF(R) € Jh. We use the convention that nr is the outer

normal to the element Kr(L)-
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Space Semidiscretization

Discontinuous Galerkin Discretization Semi-implicit Time Discretization

For each interior face I' € .%, there exist two neighbours

Kr(L), KF(R) € Jh. We use the convention that nr is the outer

normal to the element Kr(L)-

vt = trace of v| o onT,
r

v(R) = trace of v|  onT,
r

[V]r — V(L) _V(R)
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Space Semidiscretization

Discontinuous Galerkin Discretization Semi-implicit Time Discretization

@ Over %, we define the broken Sobolev space

HX(Q, %) = {v;v|k e HX(K) VK € F}
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Space Semidiscretization

Discontinuous Galerkin Discretization Semi-implicit Time Discretization

@ Over %, we define the broken Sobolev space
HA(Q, %h) = {v;v|k € H¥(K) VK € F}

@ We discretize the continuous problem in the space of
discontinuous piecewise polynomial functions

Sh={V;Vlk € Pp(K) VK € %},

where P, (K) is the space of all polynomials on K of
degree <p.
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Space Semidiscretization

Discontinuous Galerkin Discretization Semi-implicit Time Discretization

@ Over %, we define the broken Sobolev space
HA(Q, %h) = {v;v|k € H¥(K) VK € F}

@ We discretize the continuous problem in the space of
discontinuous piecewise polynomial functions

Sh={V;Vlk € Pp(K) VK € %},

where P, (K) is the space of all polynomials on K of
degree <p.

@ In order to derive a variational formulation, we multiply the
Euler equations by a test function @ € H2(Q,.%,), apply
Green’s theorem on individual elements and sum over all
elements.
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Space Semidiscretization
Discontinuous Galerkin Discretization Semi-implicit Time Discretization

Formulation 1

DAW 2 9fs(w)
Dt 0Xs

—z-Ow=0
s=1

@ Multiply by @ € H?(Q, %,), Green’s theorem:

2

3"’ s)
_ f dx + / f( .@dS
I 2w gooc 3 |3 oo
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Space Semidiscretization
Discontinuous Galerkin Discretization Semi-implicit Time Discretization

Formulation 1

DAW 2 9fs(w)

—z-Ow=0
Dt 0Xs

s=1

@ Multiply by @ € H?(Q, %,), Green’s theorem:

2 3"’ s)
_ f dx + / f( .@dS
I 2w gooc 3 |3 oo

@ In the second term incorporate a numerical flux H:

2
|3 fstwn®-gas ~ [ Hywl.w|®.nr)- pas.
s=1
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Formulation 1

DAW 2 dfs(w)
Dt 0Xs

—z-Ow=0
s=1

@ Multiply by @ € H?(Q, F,):
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Space Semidiscretization
Discontinuous Galerkin Discretization Semi-implicit Time Discretization

Formulation 2

DAW 2 dgs(w)
Dt 0Xs

+wdivz =0
s=1

@ Multiply by @ € H?(Q, %,), Green’s theorem:

2

_ Ay n®.
S 3 gstw): asd“r;,/zgs pds

Kez ' Ks=1
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Space Semidiscretization
Discontinuous Galerkin Discretization Semi-implicit Time Discretization

Formulation 2

DAW 2 dgs(w)
Dt 0Xs

+wdivz =0
s=1

@ Multiply by @ € H?(Q, %,), Green’s theorem:
2

=5 [ 3 gsw): qDo|x+

Kez ' Ks=1 Fe/

/zgs s)"PdS

@ In the second term incorporate a numerical flux H:

2
2,9t -gds = [[Hywlwi.nr)- pas.
s=1
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Space Semidiscretization
Discontinuous Galerkin Discretization Semi-implicit Time Discretization

Formulation 2

DAW & Jgs(w)
Dt + z 0Xs

s=1

+wdivz =0

@ Multiply by @ € H?(Q, F,):

/ w divz ¢ dx
Ke%
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Space Semidiscretization

Discontinuous Galerkin Discretization Semi-implicit Time Discretization

@ Discontinuous Galerkin Discretization

@ Semi-implicit Time Discretization
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Space Semidiscretization
Discontinuous Galerkin Discretization Semi-implicit Time Discretization

Formulation 1: Semi-implicit Time Discretization

DAW
( Dt h#P) + by (Wh, @) +cp(wh, @) =0

@ A fully implicit scheme requires the solution of a nonlinear
system. In the semi-implicit scheme we linearize the
nonlinear terms using their specific properties.
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Space Semidiscretization
Discontinuous Galerkin Discretization Semi-implicit Time Discretization

Formulation 1: Semi-implicit Time Discretization

DAW
( Dt h#P) + by (Wh, @) +cp(wh, @) =0

@ A fully implicit scheme requires the solution of a nonlinear
system. In the semi-implicit scheme we linearize the
nonlinear terms using their specific properties.

@ We solve only one linear system per time level.
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Space Semidiscretization
Discontinuous Galerkin Discretization Semi-implicit Time Discretization

Formulation 1: Semi-implicit Time Discretization

<DAWh

= JP) + by (Wh, @) +cp(wh, @) =0

The time derivative can be approximated by the finite difference:

DAWh 8Wh an+l(X) —Wn(X)
T(Xatn-i-l) = W(thnﬂﬂx:g{;l (x) ™~ : .

n+l Tn
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Space Semidiscretization
Discontinuous Galerkin Discretization Semi-implicit Time Discretization

Formulation 1: Semi-implicit Time Discretization

DAW
( Dt“,qo)+b.§l>(wh,¢)+0.§”(wh7¢)—0 J

Convective terms:

2
o Z / zfs(wm»l ¢dX—‘r ; /H n+1| n+l‘(rR)’nr).¢dS
Keg, Ks=1
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Space Semidiscretization

Discontinuous Galerkin Discretization Semi-implicit Time Discretization

Formulation 1: Semi-implicit Time Discretization

DAW
( Dt“,qo)+b.§l>(wh7rp)+0.§”(wh,¢)—0 J

Convective terms:

-3 [t 28 > [ w2 B nr) gds
KEZ, 'K s=1 9IXs réz, /'l
It holds that

fs(W) = As (W)W, where Ag(w) = Dfs (w)
Dw
We therefore linearize

fs(Wh) = Ag(whw" L,
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Space Semidiscretization

Discontinuous Galerkin Discretization Semi-implicit Time Discretization

Formulation 1: Semi-implicit Time Discretization

DAW
( Dt“,qo)+b.§l>(wh,¢)+0.§”(wh7¢)—0 J

Convective terms:

2 d
-3 [ 3wt S axt 2, [ ®ne) gds
KEZ, 'K s=1 IXs réz, /T

We choose the Vijayasundaram numerical flux
Hr (W, w® n) =P ((w),n)w® +P; ((w),n)w®
and linearize

L R L R
He (WS w1 R ey B (w”), ne) w4 (wh),ne) w R
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Space Semidiscretization
Discontinuous Galerkin Discretization Semi-implicit Time Discretization

Formulation 1: Semi-implicit Time Discretization

DAW
( Dt“,qo)+b,§“(wh,¢)+0.§”(vvhv¢)—0 J

ALE terms are linear, we treat them implicitly:

2 n+1
h

- z
KGZ%,/Kszl > 0xs

@ dx
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Space Semidiscretization
Discontinuous Galerkin Discretization Semi-implicit Time Discretization

Formulation 2: Semi-implicit Time Discretization

(DAWh

- ,¢> +byy (Wh, @)+ (Wh, @) = 0 J

Convective terms:

Z/fw " Sedxs 3 [y wn i ). gas
Kez /K s=1 Xs Fe%
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Space Semidiscretization

Discontinuous Galerkin Discretization Semi-implicit Time Discretization

Formulation 2: Semi-implicit Time Discretization

DAw
( Dth,qv)+b.§2>(wh.,<p)+0.ﬁz)(wh,¢)0 J

Convective terms:

-3 f@J( ) Gk é/H WS W np). gds
Kez /K s=1 Xs re

It holds that

gs(W) =fs(W) —zsw = (As(W) — zsI)w, where Ag(w) = DE\(N).

We therefore linearize
gs(W") & (As(W") —zsT)w" L.
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Space Semidiscretization

Discontinuous Galerkin Discretization Semi-implicit Time Discretization

Formulation 2: Semi-implicit Time Discretization

DAw
( Dth,qv)+b.§2>(wh.,<p)+0.ﬁz)(wh,¢)0 J

Convective terms:

2

=3 [ 3 ostwrh) ZEax é/H (W W ) gds
Kez /K s=1 Xs re

We choose the Vijayasundaram numerical flux for g

Hg (W, w®),n) = Py ((w),n)w") + Py ((w),n)w)

and linearize
n4+1)(L) whtl
Hys (W, w ‘r

nr)~P* (<Wn>7nr)wn+1‘(rL)+P— (<Wn>,nr)Wn+1||(—R>.
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Space Semidiscretization
Discontinuous Galerkin Discretization Semi-implicit Time Discretization

Formulation 2: Semi-implicit Time Discretization

,¢> +02) (Wi, @) +¢\? (Wi, @) =0 J

ALE terms are linear, we treat them implicitly:

> /KWE+l divz @dx
Ke,
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Space Semidiscretization
Discontinuous Galerkin Discretization Semi-implicit Time Discretization

Boundary Conditions - Inlet, outlet

@ BCsatrl, I'p are imposed by choosing the "outside”
boundary state w(R) in the numerical flux.
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Space Semidiscretization
Discontinuous Galerkin Discretization Semi-implicit Time Discretization

Boundary Conditions - Inlet, outlet

@ BCsatrl, I'p are imposed by choosing the "outside”
boundary state w(R) in the numerical flux.

@ Appropriate coordinate system, neglecting the tangential
derivatives and linearization give:

oq of d
a. 1(d) q

9%

o0 %

ot oXy ot =0,

+A1(q|)
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Space Semidiscretization
Discontinuous Galerkin Discretization Semi-implicit Time Discretization

Boundary Conditions - Inlet, outlet

@ BCsatrl, I'p are imposed by choosing the "outside”
boundary state w(R) in the numerical flux.

@ Appropriate coordinate system, neglecting the tangential
derivatives and linearization give:

d of
q " 1(d)

0= aq aJq
ot oXy ot X1

@ We seek qg; such that the linearized problem has sense.

+Al(ql) _07
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Space Semidiscretization
Discontinuous Galerkin Discretization Semi-implicit Time Discretization

Boundary Conditions - Inlet, outlet

@ BCsatrl, I'p are imposed by choosing the "outside”
boundary state w(R) in the numerical flux.

@ Appropriate coordinate system, neglecting the tangential
derivatives and linearization give:

Jdq  dfi(q) a9 le
Tk VT a 9%,

@ We seek qg; such that the linearized problem has sense.

@ Eigenvectors of A;(q;) form a basis and eigenvalues are
real.

+Al(ql) _07

4 4
ai = z Osls, (j= Z Bs's.
s=1 s=1
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Space Semidiscretization
Discontinuous Galerkin Discretization Semi-implicit Time Discretization

Boundary Conditions - Inlet, outlet

@ BCsatrl, I'p are imposed by choosing the "outside”
boundary state w(R) in the numerical flux.

@ Appropriate coordinate system, neglecting the tangential
derivatives and linearization give:

Jdq  dfi(q) a9 le
Tk VT a 9%,

@ We seek qg; such that the linearized problem has sense.

@ Eigenvectors of A;(q;) form a basis and eigenvalues are
real.

=0,

+A1(q|)

4 4
ai = z Osls, (j= Z Bs's.
s=1 s=1

@ Substitution into the system reduces it to four independent
equations that have an analytical solution.
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Space Semidiscretization
Discontinuous Galerkin Discretization Semi-implicit Time Discretization

Boundary Conditions - Inlet, outlet

@ Conclusion: depending on the sign of eigenvalues of
A1(gj) we either prescribe or extrapolate os, fBs
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Space Semidiscretization
Discontinuous Galerkin Discretization Semi-implicit Time Discretization

Boundary Conditions - Inlet, outlet

@ Conclusion: depending on the sign of eigenvalues of
A1(gj) we either prescribe or extrapolate os, fBs

@ When prescribing s, we evaluate from an appropriate
state (e.g. far-field).
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Space Semidiscretization
Discontinuous Galerkin Discretization Semi-implicit Time Discretization

Boundary Conditions - Inlet, outlet

@ Conclusion: depending on the sign of eigenvalues of
A1(gj) we either prescribe or extrapolate os, fBs

@ When prescribing s, we evaluate from an appropriate
state (e.g. far-field).

@ Finally
qi=Te = a=T 1q;,
a)=TB = B=T""q).
4
(XS’ A’S Zov
= rs =Ty, where % =
q; Szl?’s s Y ¥ {ﬁs, Js < 0.
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Space Semidiscretization
Discontinuous Galerkin Discretization Semi-implicit Time Discretization

Boundary Conditions - Moving walls

@ On moving impermeable walls, we prescribe v-n=2z-n
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Space Semidiscretization
Discontinuous Galerkin Discretization Semi-implicit Time Discretization

Boundary Conditions - Moving walls

@ On moving impermeable walls, we prescribe v-n=2z-n
@ We prescribe the numerical flux:
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Space Semidiscretization
Discontinuous Galerkin Discretization Semi-implicit Time Discretization

Boundary Conditions - Moving walls

@ On moving impermeable walls, we prescribe v-n=2z-n
@ We prescribe the numerical flux:

s=1
@ We write
) P2V1 pVv2
VE+ ViV
z fS(W)ns =n pvy+p N, p 21 2
& pVviVv2 pVv; +p
(e+p)va (e+p)vz
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Space Semidiscretization
Discontinuous Galerkin Discretization Semi-implicit Time Discretization

Boundary Conditions - Moving walls

@ On moving impermeable walls, we prescribe v-n=2z-n
@ We prescribe the numerical flux:

s=1
@ We write
5 P2V1 pVv2
_ pvi+p pViV2
fs(w)hs =n +n
Szl s(W)ns ! pViVo 2 pV22+p
(e+pva (e+p)vz
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Space Semidiscretization
Discontinuous Galerkin Discretization Semi-implicit Time Discretization

Boundary Conditions - Moving walls

@ On moving impermeable walls, we prescribe v-n=2z-n
@ We prescribe the numerical flux:

s=1
@ We write
p 0
2
pVv1 Ny
fs(W)hs =2z -n +
521 s(W)ng PV p Ny
e+p 0
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Space Semidiscretization
Discontinuous Galerkin Discretization Semi-implicit Time Discretization

Mesh movement

Mesh constraints
Smoothness, no crossover, efficiency, memory use.
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Space Semidiscretization
Discontinuous Galerkin Discretization Semi-implicit Time Discretization

Mesh movement

Mesh constraints
Smoothness, no crossover, efficiency, memory use.

@ Velocity smoothing vs Coordinate smoothing
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Space Semidiscretization
Discontinuous Galerkin Discretization Semi-implicit Time Discretization

Mesh movement

Mesh constraints
Smoothness, no crossover, efficiency, memory use.

@ Velocity smoothing vs Coordinate smoothing
@ Continuous vs Discrete
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Space Semidiscretization
Discontinuous Galerkin Discretization Semi-implicit Time Discretization

Mesh movement

Mesh constraints
Smoothness, no crossover, efficiency, memory use.

@ Velocity smoothing vs Coordinate smoothing
@ Continuous vs Discrete

Poisson, Linear elasticity, spring models, entropy-based...
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Space Semidiscretization
Discontinuous Galerkin Discretization Semi-implicit Time Discretization

Shock Capturing

In transonic and supersonic flows it is common that solutions
develop discontinuities. In these cases spurious under and
overshoots occur on elements near the discontinuity. Especially
in the semi-implicit case, it is desirable to avoid such
phenomena. We therefore locally add artificial diffusion to
suppress these effects.
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Space Semidiscretization

Discontinuous Galerkin Discretization Semi-implicit Time Discretization

Shock Capturing

To the scheme we add two artificial viscosity forms. Internal
diffusion:

OF (W W' @) = v Y hG /DW”+1 O dx
Keg

with v; = O(1) a given constant. Here G(i) is a discontinuity
indicator which measures interelement jumps of the solution:

GK(K) = 1 if interelement jumps of w" are large near K,
~ |0 otherwise.

V. Kucera
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Space Semidiscretization
Discontinuous Galerkin Discretization Semi-implicit Time Discretization

Shock Capturing

Interelement diffusion:

QW W) =v, 3 (G [ W] [glds,

with v, = O(1) a given constant. This term allows to strengthen
the influence of neighbouring elements and improves the
behavior of the method in the case, when strongly unstructured
and/or anisotropic meshes are used.
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Spa emidiscretization

Discontinuous Galerkin Discretization Semi-implicit Time Discretization

Thank you for your attention
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