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Let Ωt ⊂ IR2 be a bounded domain depending on time t with
boundary ∂Ωt = ΓI ∪ΓO ∪ΓWt .

Continuous Problem

Find w(·, t) : Ωt → R4 such that

∂w
∂ t

+
2

∑
s=1

∂ fs(w)
∂xs

= 0

where

w = (ρ,ρv1,ρv2,e)T ∈ R4,

fs(w) = (ρvs,ρv1vs +δ1sp,ρv2vs +δ2sp,(e +p)vs)T,
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We add the thermodynamical relation

p = (γ−1)(e−ρ|v |2/2).

and boundary conditions:

ΓI ,ΓO : as in the FVM,

ΓWt : v ·n = z ·n, where z is the velocity of the moving wall.
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Continuous Problem
ALE Formulation

At : Ω0 →Ωt ,

At : X 7→ x = x (X , t).

We define the ALE velocity:

z̃(X , t) =
∂

∂ t
At(X ), X ∈Ω0

z(x , t) = z̃(A −1
t (x ), t), x ∈Ωt

(1)

and the ALE derivative of a function f = f (x , t) defined in Ωt :

DAf
Dt

(x , t) =
∂ f̃
∂ t

(X , t)|X=A −1
t (x ),

f̃ (X , t) = f (At(X ), t), X ∈Ω0.

(2)
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V. Kučera Compressible Flows in Time Dependent Domains...



ALE Formulation of the Continuous Problem
Discontinuous Galerkin Discretization

Continuous Problem
ALE Formulation

At : Ω0 →Ωt ,

At : X 7→ x = x (X , t).

We define the ALE velocity:

z̃(X , t) =
∂

∂ t
At(X ), X ∈Ω0

z(x , t) = z̃(A −1
t (x ), t), x ∈Ωt

(1)

and the ALE derivative of a function f = f (x , t) defined in Ωt :

DAf
Dt

(x , t) =
∂ f̃
∂ t

(X , t)|X=A −1
t (x ),

f̃ (X , t) = f (At(X ), t), X ∈Ω0.

(2)
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Lemma

1)
DAf
Dt

=
∂ f
∂ t

+z ·∇f ,

2)
DAf
Dt

=
∂ f
∂ t

+div(zf )− fdivz.

Using this lemma, we can reformulate the Euler equations:

Formulation 1:

∂w
∂ t

+
2

∑
s=1

∂ fs(w)
∂xs

= 0 ⇐⇒ DAw
Dt

+
2

∑
s=1

∂ fs(w)
∂xs

−z ·∇w = 0.

V. Kučera Compressible Flows in Time Dependent Domains...



ALE Formulation of the Continuous Problem
Discontinuous Galerkin Discretization

Continuous Problem
ALE Formulation

Lemma

1)
DAf
Dt

=
∂ f
∂ t

+z ·∇f ,

2)
DAf
Dt

=
∂ f
∂ t

+div(zf )− fdivz.

Using this lemma, we can reformulate the Euler equations:

Formulation 1:

∂w
∂ t

+
2

∑
s=1

∂ fs(w)
∂xs

= 0 ⇐⇒ DAw
Dt

+
2

∑
s=1

∂ fs(w)
∂xs

−z ·∇w = 0.
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DAf
Dt
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∂ f
∂ t
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Using this lemma, we can reformulate the Euler equations:
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∂w
∂ t

+
2
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∂ fs(w)
∂xs
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∂xs
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Here gs,s = 1,2, are modified inviscid fluxes

gs(w) = fs(w)−zsw.
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Let Th be a partition of the closure Ωt into a finite number of
closed triangles K ∈Th.

By Fh we denote the set of all edges of Th. For a given edge
Γ ∈Fh we define a unit normal nΓ.

K1

K2

K3

K4

K5

Γ1

Γ2

Γ3Γ4

Γ5

Γ6

Γ7

Γ8

~nΓ1

~nΓ2

~nΓ3

~nΓ4

~nΓ5

~nΓ6

~nΓ7

~nΓ8

V. Kučera Compressible Flows in Time Dependent Domains...



ALE Formulation of the Continuous Problem
Discontinuous Galerkin Discretization

Space Semidiscretization
Semi-implicit Time Discretization

Let Th be a partition of the closure Ωt into a finite number of
closed triangles K ∈Th.

By Fh we denote the set of all edges of Th. For a given edge
Γ ∈Fh we define a unit normal nΓ.

K1

K2

K3

K4

K5

Γ1

Γ2

Γ3Γ4

Γ5

Γ6

Γ7

Γ8

~nΓ1

~nΓ2

~nΓ3

~nΓ4

~nΓ5

~nΓ6

~nΓ7

~nΓ8
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For each interior face Γ ∈Fh there exist two neighbours
K (L)

Γ ,K (R)
Γ ∈Th. We use the convention that nΓ is the outer

normal to the element K (L)
Γ .

v (L) = trace of v |
K (L)

Γ
on Γ,

v (R) = trace of v |
K (L)

Γ
on Γ,

[v ]Γ = v (L)−v (R)

K
(L)
Γ

K
(R)
Γ

Γ

~nΓ
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Over Th we define the broken Sobolev space

Hk (Ω,Th) = {v ;v |K ∈ Hk (K ) ∀K ∈Th}

We discretize the continuous problem in the space of
discontinuous piecewise polynomial functions

Sh = {v ;v |K ∈ Pp(K ) ∀K ∈Th},

where Pp(K ) is the space of all polynomials on K of
degree ≤ p.

In order to derive a variational formulation, we multiply the
Euler equations by a test function ϕϕϕ ∈ H2(Ω,Th), apply
Green’s theorem on individual elements and sum over all
elements.
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Formulation 1

DAw
Dt

+
2

∑
s=1

∂ fs(w)
∂xs

−z ·∇w = 0

Multiply by ϕϕϕ ∈ H2(Ω,Th), Green’s theorem:

− ∑
K∈Th

∫
K

2

∑
s=1

fs(w) · ∂ϕϕϕ

∂xs
dx + ∑

Γ∈Fh

∫
Γ

2

∑
s=1

fs(w)n(s)
Γ ·ϕϕϕ dS

In the second term incorporate a numerical flux H:

∫
Γ

2

∑
s=1

fs(w)n(s)
Γ ·ϕϕϕ dS ≈

∫
Γ

Hf (w|
(L)
Γ ,w|(R)

Γ ,nΓ) ·ϕϕϕ dS,
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∂ fs(w)
∂xs

−z ·∇w = 0

Multiply by ϕϕϕ ∈ H2(Ω,Th):

− ∑
K∈Th

∫
K

2

∑
s=1
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∂w
∂xs

ϕϕϕ dx
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Formulation 2

DAw
Dt

+
2

∑
s=1

∂gs(w)
∂xs

+wdivz = 0

Multiply by ϕϕϕ ∈ H2(Ω,Th), Green’s theorem:

− ∑
K∈Th

∫
K

2

∑
s=1

gs(w) · ∂ϕϕϕ

∂xs
dx + ∑

Γ∈Fh

∫
Γ

2

∑
s=1

gs(w)n(s)
Γ ·ϕϕϕ dS

In the second term incorporate a numerical flux H:

∫
Γ

2

∑
s=1

gs(w)n(s)
Γ ·ϕϕϕ dS ≈

∫
Γ

Hg(w|(L)
Γ ,w|(R)

Γ ,nΓ) ·ϕϕϕ dS,
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DAw
Dt

+
2

∑
s=1

∂gs(w)
∂xs

+wdivz = 0

Multiply by ϕϕϕ ∈ H2(Ω,Th):

∑
K∈Th

∫
K

w divz ϕϕϕ dx
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Formulation 1: Semi-implicit Time Discretization

(
DAwh

Dt
,ϕϕϕ

)
+bh(wh,ϕϕϕ)+ch(wh,ϕϕϕ) = 0

A fully implicit scheme requires the solution of a nonlinear
system. In the semi-implicit scheme we linearize the
nonlinear terms using their specific properties.

We solve only one linear system per time level.
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Formulation 1: Semi-implicit Time Discretization

(
DAwh

Dt
,ϕϕϕ

)
+bh(wh,ϕϕϕ)+ch(wh,ϕϕϕ) = 0

The time derivative can be approximated by the finite difference:

DAwh

Dt
(x , tn+1) =

∂ w̃h

∂ t
(X , tn+1)|X=A −1

tn+1
(x ) ≈

w̃n+1
h (X )− w̃n

h(X )
τn

.
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Formulation 1: Semi-implicit Time Discretization

(
DAwh

Dt
,ϕϕϕ

)
+b(1)

h (wh,ϕϕϕ)+c(1)
h (wh,ϕϕϕ) = 0

Convective terms:

− ∑
K∈Th

∫
K

2

∑
s=1

fs(wn+1)· ∂ϕϕϕ

∂xs
dx + ∑

Γ∈Fh

∫
Γ

Hf (w
n+1|(L)

Γ ,wn+1|(R)
Γ ,nΓ)·ϕϕϕ dS
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Formulation 1: Semi-implicit Time Discretization

(
DAwh

Dt
,ϕϕϕ

)
+b(1)

h (wh,ϕϕϕ)+c(1)
h (wh,ϕϕϕ) = 0

Convective terms:

− ∑
K∈Th

∫
K

2

∑
s=1

fs(wn+1)· ∂ϕϕϕ

∂xs
dx + ∑

Γ∈Fh

∫
Γ

Hf (w
n+1|(L)

Γ ,wn+1|(R)
Γ ,nΓ)·ϕϕϕ dS

It holds that

fs(w) = As(w)w, where As(w) =
Dfs(w)

Dw
.

We therefore linearize
fs(wn+1)≈ As(wn)wn+1.
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Discontinuous Galerkin Discretization

Space Semidiscretization
Semi-implicit Time Discretization

Formulation 1: Semi-implicit Time Discretization

(
DAwh

Dt
,ϕϕϕ

)
+b(1)

h (wh,ϕϕϕ)+c(1)
h (wh,ϕϕϕ) = 0

Convective terms:

− ∑
K∈Th

∫
K

2

∑
s=1

fs(wn+1)· ∂ϕϕϕ

∂xs
dx + ∑

Γ∈Fh

∫
Γ

Hf (w
n+1|(L)

Γ ,wn+1|(R)
Γ ,nΓ)·ϕϕϕ dS

We choose the Vijayasundaram numerical flux

Hf (w
(L),w(R),n) = P+

f (〈w〉,n)w(L) +P−f (〈w〉,n)w(R)

and linearize

Hf (w
n+1|(L)

Γ ,wn+1|(R)
Γ ,nΓ)≈P+

f

(
〈wn〉,nΓ

)
wn+1|(L)

Γ +P−f
(
〈wn〉,nΓ

)
wn+1|(R)

Γ .
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Formulation 1: Semi-implicit Time Discretization

(
DAwh

Dt
,ϕϕϕ

)
+b(1)

h (wh,ϕϕϕ)+c(1)
h (wh,ϕϕϕ) = 0

ALE terms are linear, we treat them implicitly:

− ∑
K∈Th

∫
K

2

∑
s=1

zs
∂wn+1

h

∂xs
ϕϕϕ dx
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Formulation 2: Semi-implicit Time Discretization

(
DAwh

Dt
,ϕϕϕ

)
+b(2)

h (wh,ϕϕϕ)+c(2)
h (wh,ϕϕϕ) = 0

Convective terms:

− ∑
K∈Th

∫
K

2

∑
s=1

gs(wn+1)· ∂ϕϕϕ

∂xs
dx + ∑

Γ∈Fh

∫
Γ

Hg(wn+1|(L)
Γ ,wn+1|(R)

Γ ,nΓ)·ϕϕϕ dS
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Formulation 2: Semi-implicit Time Discretization

(
DAwh

Dt
,ϕϕϕ

)
+b(2)

h (wh,ϕϕϕ)+c(2)
h (wh,ϕϕϕ) = 0

Convective terms:

− ∑
K∈Th

∫
K

2

∑
s=1

gs(wn+1)· ∂ϕϕϕ

∂xs
dx + ∑

Γ∈Fh

∫
Γ

Hg(wn+1|(L)
Γ ,wn+1|(R)

Γ ,nΓ)·ϕϕϕ dS

It holds that

gs(w) = fs(w)−zsw =
(
As(w)−zsI

)
w, where As(w) =

Dfs(w)
Dw

.

We therefore linearize
gs(wn+1)≈

(
As(wn)−zsI

)
wn+1.
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Formulation 2: Semi-implicit Time Discretization

(
DAwh

Dt
,ϕϕϕ

)
+b(2)

h (wh,ϕϕϕ)+c(2)
h (wh,ϕϕϕ) = 0

Convective terms:

− ∑
K∈Th

∫
K

2

∑
s=1

gs(wn+1)· ∂ϕϕϕ

∂xs
dx + ∑

Γ∈Fh

∫
Γ

Hg(wn+1|(L)
Γ ,wn+1|(R)

Γ ,nΓ)·ϕϕϕ dS

We choose the Vijayasundaram numerical flux for g

Hg(w(L),w(R),n) = P+
g (〈w〉,n)w(L) +P−g (〈w〉,n)w(L)

and linearize

HVS(wn+1|(L)
Γ ,wn+1|(R)

Γ ,nΓ)≈P+ (
〈wn〉,nΓ

)
wn+1|(L)

Γ +P−
(
〈wn〉,nΓ

)
wn+1|(R)

Γ .
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Formulation 2: Semi-implicit Time Discretization

(
DAwh

Dt
,ϕϕϕ

)
+b(2)

h (wh,ϕϕϕ)+c(2)
h (wh,ϕϕϕ) = 0

ALE terms are linear, we treat them implicitly:

∑
K∈Th

∫
K

wk+1
h divz ϕϕϕ dx
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ALE Formulation of the Continuous Problem
Discontinuous Galerkin Discretization

Space Semidiscretization
Semi-implicit Time Discretization

Boundary Conditions - Inlet, outlet

BCs at ΓI , ΓO are imposed by choosing the ”outside”
boundary state w(R) in the numerical flux.
Appropriate coordinate system, neglecting the tangential
derivatives and linearization give:

∂q
∂ t

+
∂ f1(q)

∂ x̃1
= 0 ⇒ ∂q

∂ t
+A1(q i)

∂q
∂ x̃1

= 0,

We seek qj such that the linearized problem has sense.
Eigenvectors of A1(q i) form a basis and eigenvalues are
real.

q i =
4

∑
s=1

αsrs, q j =
4

∑
s=1

βsrs.

Substitution into the system reduces it to four independent
equations that have an analytical solution.
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ALE Formulation of the Continuous Problem
Discontinuous Galerkin Discretization

Space Semidiscretization
Semi-implicit Time Discretization

Boundary Conditions - Inlet, outlet

Conclusion: depending on the sign of eigenvalues of
A1(q i) we either prescribe or extrapolate αs, βs

When prescribing βs, we evaluate from an appropriate
state (e.g. far-field).

Finally

q i = Tααα ⇒ ααα = T−1q i ,

q0
j = Tβββ ⇒ βββ = T−1q0

j .

q j :=
4

∑
s=1

γsrs = Tγγγ, where γs =

{
αs, λs ≥ 0,

βs, λs < 0.
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ALE Formulation of the Continuous Problem
Discontinuous Galerkin Discretization

Space Semidiscretization
Semi-implicit Time Discretization

Boundary Conditions - Moving walls

On moving impermeable walls, we prescribe v ·n = z ·n
We prescribe the numerical flux:

Hf (w(L),w(R),n)≈
2

∑
s=1

fs(w)ns

We write
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Boundary Conditions - Moving walls

On moving impermeable walls, we prescribe v ·n = z ·n
We prescribe the numerical flux:

Hf (w(L),w(R),n)≈
2

∑
s=1

fs(w)ns

We write

2

∑
s=1

fs(w)ns = n1


ρv1

ρv2
1 +p

ρv1v2

(e +p)v1

+n2


ρv2

ρv1v2

ρv2
2 +p

(e +p)v2
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Boundary Conditions - Moving walls

On moving impermeable walls, we prescribe v ·n = z ·n
We prescribe the numerical flux:

Hf (w(L),w(R),n)≈
2

∑
s=1

fs(w)ns

We write

2

∑
s=1

fs(w)ns = z ·n


ρ

ρv1

ρv2

e +p

+p


0
n1

n2

0
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ALE Formulation of the Continuous Problem
Discontinuous Galerkin Discretization

Space Semidiscretization
Semi-implicit Time Discretization

Mesh movement

Mesh constraints

Smoothness, no crossover, efficiency, memory use.

Velocity smoothing vs Coordinate smoothing

Continuous vs Discrete

Poisson, Linear elasticity, spring models, entropy-based...
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ALE Formulation of the Continuous Problem
Discontinuous Galerkin Discretization

Space Semidiscretization
Semi-implicit Time Discretization

Shock Capturing

In transonic and supersonic flows it is common that solutions
develop discontinuities. In these cases spurious under and
overshoots occur on elements near the discontinuity. Especially
in the semi-implicit case, it is desirable to avoid such
phenomena. We therefore locally add artificial diffusion to
suppress these effects.
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Shock Capturing

To the scheme we add two artificial viscosity forms. Internal
diffusion:

Φ1
h(w

n,wn+1,ϕϕϕ) = ν1 ∑
K∈Th

hK Gn(K )
∫

K
∇wn+1 ·∇ϕϕϕ dx

with ν1 = O(1) a given constant. Here G(i) is a discontinuity
indicator which measures interelement jumps of the solution:

Gk (K ) =

{
1 if interelement jumps of wn are large near K ,

0 otherwise.
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Shock Capturing

Interelement diffusion:

Φ2
h(w

n,wn+1,ϕϕϕ) = ν2 ∑
Γ∈Fh

〈G〉Γ
∫

Γ
[wn+1] · [ϕϕϕ]dS,

with ν2 = O(1) a given constant. This term allows to strengthen
the influence of neighbouring elements and improves the
behavior of the method in the case, when strongly unstructured
and/or anisotropic meshes are used.
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Thank you for your attention
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